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Given a function f; uniform limit of analytic polynomials on a compact, regular
set Ec C¥, we relate analytic extension properties of f to the location of the zeros
of the best polynomial approximants to f in either the uniform norm on E or in
appropriate L? norms.

These results give multivariable versions of one-variable results due to Blatt—Saff,
Plesniak and Wojcik.  © 1999 Academic Press
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0. INTRODUCTION

Let EcC” be compact and regular (in the sense of pluripotential
theory). Let W(E) denote the closure in the uniform norm on E of P(C%)
(where P(C") denotes the analytic polynomials on C%). For fe W(E) we
let p,(z) denote a best approximant to f from P,, n=1,2, 3, ..., where P,
denotes the analytic polynomials of total degree <n. Given a positive
Borel measure u on E we let f,, denote the best approximant from P, to f
in L*(du)

In this paper we will study the relation between analytic extension
properties of f and zeros of the sequences { p,(z)} or {f,(z)}.

Let Vg(z) denote the pluricomplex Green function of E (see (1.1) for the
definition).
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For R>1, we let
Egr={zeC"| Vg(z)<log R}. (0.1)

We will study analytic extension of f to open sets of the form Ep, i.e., does
there exist F, analytic on E, with F/gp= f?

In one variable, V(z) is the Green function of C\E with a logarithmic
pole at oo (and extended by zero on E), where £ denotes the polynomial
convex hull of E. In the one variable case, there are extensive results
due to S. N. Bernstein, H.-P. Blatt-E. Saff, P. Borwein, W. Plesniak and
A. Wojcik (see references). Roughly speaking, f has an analytic extension to
Eg if and only if almost all zeros of {p,} or {f,} liec in C\Eg. If f'is not
analytic on E (i.e., does not have an analytic extension to a neighborhood
of E) then every point on OF is a limit point of the zeros of {p,}. The
precise statements must discount zeros in the interior of £, and must be
modified if £ is identically zero on a component of the interior of E.

Specific one variable results (reformulated) are as follows

THeOREM 0.1 (Wojcik [W1]). f has an analytic extension to Eyg if the
zeros of { p,} have no point of accumulation in E .

THeOREM 0.2 (Blatt-Saff [BS]). Suppose f is not analytic on E and
for some z, € OE, f(z,) #0. Then there exists a sequence of points {z,} with
lim z,=z¢ and p,(z,)=0.

n— oo n

THEOREM 0.3 (Plesniak [P]). Let u be a finite Borel measure on E
which satisfies the Leja polynomial condition (see [P] for the definition).
Then f has an analytic extension to Eg if the zeros of { f,} have no point of
accumulation in Eg.

In this paper we will give multivariable versions of these results.
Theorem 3.5 and Corollary 3.6 generalize theorems 0.1 and 0.3. In
Corollary 3.6, the hypothesis that u satisfy the Bernstein—-Markov condition
is a less stringent on u than requiring it to satisfy the Leja polynomial con-
dition (see [ Bl1]). Theorem 3.8 is a multivariable version of Theorem 0.2.
In Theorem 3.8 an additional hypothesis is required (see (3.15) or (3.20))
on the set E.

We also prove (Theorem 2.1) an L? analogue of a result on Tchebyshev
polynomials ([ BI2, Theorem 3.17]; [Si3]). This is used in the proof of
Corollary 3.6 but is of independent interest.



198 BLOOM AND SZCZEPANSKI

1. PRELIMINARIES

Let Ec CV be a compact set. Let V' denote its pluricomplex extremal
function, i.e.

Vig(z)=sup {u(z) :ue L, u/p<0}, (1.1)
where ¥ denotes the Lelong class of plurisubharmonic functions satisfying

sup u(z) —log*|z| < oo, (1.2)

zeCN

where |-| denotes the Euclidean norm in C¥.

We shall assume that E is regular, i.c., the function V' is continuous.
This implies that E is not pluripolar. Recall that a set Ec C" is said to be
pluripolar if for every ae€ E there is a neighborhood V of a and a
plurisubharmonic function u on V such that EnVc{zeV|u=—o}.
Pluripolar sets have Lebesgue (2n—dimensional) measure zero [K, Cor.
2.9.10].

Let u be a finite Borel measure on E such that the pair (E, i) satisfies
the Bernstein—-Markov condition (BM), i.e., for any ¢ >0 and ¢, 0 <g < o0,
there exists 4 = A(e, ¢) such that

Pl z<A(L+e)* P |p],, (1.3)

for all polynomials p e P(C"), where

1/q

o= [, Ip207 ) " (14)

It is known (see [BIl, Remark 3.27]) that if u satisfies (BM) for one
exponent ¢, 0 < g < oo, then it satisfies (BM) for all ¢, 0 < ¢ < oo.

Let L4(E, u), 1 <g < oo, denote the continuous functions on E that are
limits of polynomials in the norm | |, ,. Of course, W(E) = LL(E, ).

Let f be a continuous function on E. We denote by p, € P, and f, € P,,,
respectively, polynomials of degree at most n € N of best approximation in
the uniform norm and the norm |- || respectively, i.e.

M g2
Hf_anEzlnf{Hf_anEs qnepn}9 (15)
Hf_fn”y,q:inf{Hf_qn”y,qa qnepn}’ (16)

These best approximants are not necessarily unique.
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From the Bernstein—Walsh—Siciak theorem [ Sil, Theorem 10.3] and the
Bernstein—Walsh inequality (BW)

Ip(2) < Ipll g (exp Vi(2))*®?,  for zeC" and (1.7)

for all polynomials p e P(C") (see, eg., [Si2, 2.11] or [K, 5.1]) we con-
clude the following

Remark 1.1. (cf. [Si2, Corollary 8.6]) Let EcC" be a compact,
regular set and let u be a Borel measure such that (E, ) satisfies (BM). Let
f'be a continuous function on E and R > 1. If f admits an analytic extension
onto Eg, denoted F, then the sequences of polynomials of best approxima-
tion {p,} and {f,} in the norms |||z and -], , are uniformly bounded
on compact subsets of Ex and, for 1 <r< R, we have

lim sup HF—p,,HIE/:'S% (18)
and
limsup | F—/, |}/ <. (19)

We shall denote by #, the homogeneous part of degree n of the polyno-
mial 7,(2) =2 g <n @2 1€, P (2) =2 yona.z* If degr,<n we put
F,(z)=0.

For a homogeneous polynomial /1,(z) =3 -,a,z* we define the
Tchebyshev polynomials associated with £, and the norms |-| g, ||-|

respectively, by .
Tchgh,(z)=h,(z)—r,_q, (1.10)
Tch, ,h,(z)=h,(z)—s,_1, (1.11)
where r,_,,s,_, € P,_, are polynomials of best approximation to #, in

the norms || z and ||| respectively, i.e.

“q°
th(z)—rn71 HE:inf{th(Z)_pnfl ”Eapnfl ePnfl}s
”hn(z)_sn—l Hﬂ,q:inf{”hn(z)_pn—l H,u,q’pn—l e})n—l}‘

In general, Tchgh, and Tch, ,h, need not be unique (except for g=2,
since L3(E, i) is a Hilbert space, thus s,_; is the orthogonal projection of
h, on P,_,), however the norms ||Tchzh, |z and |Tch, ,h,ll, , are unam-
biguously defined.
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LemMA 1.2 (see also [Sz, Lemma 527). Let (E,u) satisfy the
Bernstein-Markov  condition. Let {h,},_, 3 -+ be a sequence of
homogeneous polynomials of degree n. Let q satisfy 1 <q < oo. Then

l/n H 1/n

lim sup || Tchgh, | } 1/”—hm 15Up | Tchgh,| )

n— oo

=lim sup || Tch

ﬂqn

=limsup ||Tch, ,h,| )"

Proof. From (BM) we have, for every ¢ >0

|Tch,, h,lle< A1 +e)" ([ Tch,  h, |, 4 (1.12)
Since Tch,, ,h, is a competitor for Tchzh, we have
| Tehgh, | e<|Tch,, 4, k. (1.13)
Similarly
|Tch,,  h,ll,. ,<|Tchgh,l,, (1.14)

Since u(E) < + oo we have

| Tchghyll,., o <H(E)Y || Tchgh, || (1.15)
Now, (1.12) and (1.13) imply
‘l/n

hm sup | Tchgh,|

<11m sup || Tchy, ,h,|

| " <limsup || Tch, ,h,| "
n— oo

Also, (1.14) and (1.15) imply
lim sup || Tch,, ,h, | )" <hm 15Up | Tchgh, | ", <11m 15Up | Tchgh, | ".

The result follows. [

For ue ¥ we define the Robin function associated with u by

p.([z]) =lim sup u(lz)—log*|iz], for zeCV\{0}, (1.16)

|A] = oo

where [ - ]: CM\{0} 3z— [z] e P! denotes the natural map and PV~!
denotes complex projective (N 1) -space.
It is seen that if p, € P, then u,(z) :=1/n log |p,(z)| € & and

1
Pu(lz])="log|p,(z)] —log|z|,  for z30. (1.17)

If deg p, <n then p,(z)=0 and we put p, = —c0.
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The Robin function of a compact, regular set E, denoted pg([z]) is
defined as the Robin function of V(z).

2. AN APPLICATION OF THE ROBIN FUNCTION TO POLYNOMIAL
APPROXIMATION—THE CASE OF L? NORMS

We prove a counterpart of [ BI2, Theorem 3.1] in the case of the polyno-
mial approximation in L?-norms.

THEOREM 2.1. Let Ec C" be a compact, regular set and let u be a Borel
measure such that the pair (E,u) satisfies (BM). Fix ¢, 1 <g<oo. Let
feL4YE, u) and R>1. The following conditions are equivalent

f extends analytically to Ex (2.1)
l/n 1
tim sup [|f =1, /g < (2.2)
: 2 1/n 1
lim sup || Tch,,, , /o |l £ <E (2.3)
| Tch Un < ! 24
lmsupH C‘uqan‘uq\R ()

hrnsupflog|fn( )| —log |z| <pg([z]) —log R, for all z#0, (2.5)

n— oo

where { f,} is a sequence of polynomials of best approximation in the norm
1l g

The proof of the theorem is analogous to the proof of [ BI2, Theorem 3.1]
2.1)=(22)=(24)=(22)=(2.1)

(23) <= (2.4)
(23)=(2.5) = (2.4).

Proof. Assume (2.1). By the Bernstein—Walsh—Siciak theorem we get

. 1
lim sup | f— pnl\};%ﬁ, (2.6)
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where {p,} is a sequence of polynomials of best uniform approximation to
fon E. Since

H]F_an,u,q< Hf_ pnH/A,q<(1u(E))1/qu_anE! (27)
we have
: 1/n 1
h;n sup If=fall . AT (2.8)

Le., (2.2) holds. )
Next, by the definition of the Tchebyshev polynomial T¢h, ,f, and by
(1.6), we get

NTchy, o foull g < IS Fut Ul
<N =S g+ 1= Fo i g
<21/~ Fri g (29)
Thus, by (2.2),

lim sup || Tch, A <limsup | f— fn\l,ﬂ/’;\R,
and (2.4) follows.
Since the pair (E, i) satisfies (BM), by Lemma 1.2, the conditions (2.3)
and (2.4) are equivalent.
Assume (2.4). By the definition of the Tchebyshev polynomial
Tchﬂ)qfnﬂ, we have

L =Sl g < F=vr =Ty g frw i) g
<UIf=Frusi gt 1Tch, g Fui )y (2.10)

Since Hfian,u,qZ Hfifn+1 H,u,q and 1imn—>oo Hfifn H,u,q:O’ we have, by
(24),

. 1
lim sup |,/ =/, < (2.11)

ie., (2.2) holds.
Next, suppose that (2.2) holds. Fix r, 1 <r <R, and then fix ¢>0 and p
such that (1+¢)r<p<R. By (2.2), there exists ny=ny(p) such that

1
Hf—fn\l,,,q<ﬁ for nxn,. (2.12)
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By (BW),

i =Fallm <" M fair = fulle- (2.13)

Next, by (BM), there exists 4, >0 such that

1 fus1=fal e< AL+ fui1 = fully g forall . (2.14)

Since

”fn+l_fn”y,q< an+l_f‘|/4,q+ ‘|fn_fHﬂ,q<2”f_fnHy,q’ (215)

we get, for n=ng, | foi1—Sulg <24.p((1+¢)r/p)"* " Thus, for all
M, n>=ng,, we have

Y 1 fesr—filE < C<(1T)’>n , (2.16)
k=n

where C=24,p%(p— (1 +¢)r)~ L Since (1 +¢) r < p, the series

Jo+ i Srer1— S
k=0

converges uniformly on E,. Since r <R has been chosen arbitrary, we
conclude that f extends analytically to Eg. i.e., (2.1) follows.

Suppose that (2.3) holds. Fix r such that I <r < R. Then for n>n,(r) we
have | Tch, ,f, |l " <1/r or

l A
log r+—log|Tch, ,f,(z)| <0,  forall zekE. (2.17)
n

Hence, by the definition of the pluricomplex extremal function V, (see
(1.1)), we have

1 .
logr—i—;log |Tch,, ,f.(2)] < Vig(z2), for all zeCW. (2.19)
Taking the Robin function of the both sides of (2.19) gives
1 .
logr+—log |f,(z)| —log |z| < pr([z]), for all zeCV\{0}. (2.20)
n

Since it holds for all n>=n,(r) and all r < R we get (2.5).

It remains to prove (2.5)=(2.4). This follows from the following
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LemMa 2.2 (cf. [BI2, Theorem 3.2]). Let Ec C" be a compact, regular
set and let u be a Borel measure such that (E, u) satisfies (BM). Let q satisfy
I<g<oo. Let h be a sequence of homogeneous polynomials satisfying
degh,=n or h,(z)=0, for all neN,. Let R>1. If

lim supflog |h,(z)| —log |z| <pg([z])—log R,  for all zeCV\{0}
" (2.21)

then

1
lim sup | Tch,, b, \" <E (2.22)

Hog =S

Recall (1.13) that if 4,(z) =0 we put 1/n log |h,(z)| —log |z] = — o0.
Proof of of Lemma 2.2. From [BI2, Theorem 3.1] (2.21) we have that

1
llm 15Up | Tehgh, | ¥ <—
R

and the result now follows from Lemma 1.2. ||

Putting 4, := fn in the above lemma gives the implication (2.5) = (2.4).
This completes the proof of Theorem 2.1.

3. ZEROS OF POLYNOMIALS OF BEST APPROXIMATION

Let E be a compact, regular subset of C", f'e W(E) and {p,} a sequence
of best approximants to f in the uniform norm on E. We will relate the
location of the zeros of { p,} to the analytic extension properties of f.

First we consider

oz) = <n£nj£pilog |pn<z>|>* (3.1)

where ( )* denotes upper semi-continuous regularization. (Recall that
(g(z2))* =lim, . g(<).)

The sequence {p,} is uniformly bounded on E. Since E is non pluri-
polar, {p,(z)} is locally bounded from above on C" by (BW), and so
veZ [K, prop. 5.2.1].

Let

Z:={zeC" | v(z) <0} (32)

and we let int(Z) denote the interior of the set Z. Let R> 1. We have
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LemMMA 3.1.  The function f extends to a holomorphic function on Eg if
and only if int(Z) o Ey.

Proof. Suppose that E, cint(Z). Let 1 <r<R. Then E, cint(Z).
Since

1
lim sup;log |p,.(2)| <0 on E,
we have by Hartogs lemma, given ¢ > 0, there exists n,(¢)
1 _
—log |p,(z)| <e, for n=ny(¢) and z€ek, (3.3)
n
and
1 N
—log |p,.(2)| <e+ VE(z) for zeC" and nx=n,. (3.4)
n g
Taking the Robin function of both sides of the above inequality gives
1 .
Slogp,(z)l —loglz se+pg([z])  for n=n,. (3.5)

Recall that since E is regular,
Vg (z) =max{Vy(z) —logr, 0} (3.6)
and
pe([2])=pEe([z]) —logr, for all z#0. (3.7)

Using (3.5) and (3.7) gives
1 .
—log |p,(z)| —log |z <e+ pgp([z]) —logr for n=ny,. (3.8)
n
Hence, for all ¢ >0, we have
. 1 R
lim sup - log |5, ()| —log |2| <&+ p([=]) ~log 7 (3.9)
This implies

. 1
lim sup zlog |Pn(2)] —log |z| < pg([z]) —logr (3.10)

n— oo
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Then, by [ BI2, Theorem 3.1] fextends analytically to E,. Since (3.10) is
valid for any r < R, the function f extends analytically to Eg.

Conversely, if / extends analytically to Eg, by Remark 1.1, the sequence
{p,} is uniformly bounded on E,, for all < R. Thus, v <0 on E, and since
U,-r E, = Eg, we have v<0 on ER and so E cint(Z), since Ey is open
(cf. 1.1). 1

Let E <= C¥ be a compact, regular set and let x4 be a finite Borel measure
such that (E, u) satisfies (BM). Let ¢ satisfy 1<g<oo. Let {f,} be a
sequence of polynomials of best approximation in the norm ||, , to a
function fe L%4(E, u). We put

v,(2): <l1msuplog|fn( |>>!< (3.11)

n— oo

The sequence {f,(z)} is uniformly bounded in LY(E, u). Using (BM) we
conclude that lim sup,,_, ., | f,, || 4" <1 so v, € (by [BIl, Lemma 3.2] and
[K, prop. 5.2.1]).

Let Z,={zeC":v,(z)<0}. Let int(Z,) denote the interior of the
set Z,,.

Lemma 3.2. Let fe LY(E, 1). Let R>1. The function f extends analyti-
cally to E if and only if mt(Z,) > Eg.

The proof of the above lemma is analogous to the proof of Lemma 3.1.
To prove that Ex —int(Z,) implies that f extends analytically to Ex, one
should repeat (3.3)—(3.10) putting { f,} instead of {p,} and use Theorem
2.1 in (3.10) instead of [BI2, Theorem 3.1]. The converse implication

follows from Remark 1.1. ||

Lemma 33. (i) ZoEand Z,>E.

(ii) Let fe W(E) not be analytic on E. Then 0Z N E # . Similarly
for fe LYE, ) and f not analytic on E, then 0Z, N E # (.

(1) Let fe W(E) have an analytic extension to Eg (for some R>1)
but not to E, for any s>R. Then OEg no(int(Z))# J and OEx N
o(int(Z,)) # .

Proof. (i) To show that Z > E we must show that v <0 on E.

The sequence {p,(z)} is uniformly bounded on E so limsup,_, .,
1/nlog |p,(z)| <0 on E. Since negligible sets are pluripolar [ K, Cor 4.6.2]
we have v <0 on E\N, where N is pluripolar, so v < V. But by [K, Cor
525] Viy=Vgand Vy=0on E.

The proof that Z, > E is similar.
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(1) That 0ZnE# follows from (i) and Lemma 3.1. That
0Z, n E+#  follows from (i) and Lemma 3.2.

(i1) This follows from Lemmas 3.1 and 3.2. ||

ExaMpPLE 3.4. Let E be a compact, regular subset of C and let f € W(E)
not be analytic on E. Then it follows from ([ BS, Theorem 2.1 and Lemma
4.27) that v (defined by (3.1)) is the Green function of C\£ and that Z=E.

In the multivariable case we will give an example of fe W(E), not
analytic on E but where Z# E (E will be polynomially convex so that
E=E).

Let E be the unit ball in C2 E={(zy,2,):|z;1*+|z,|*<1} and let
f=f(z;) be a function continuous on 4, ={z, eC:|z;| <1} analytic on
int(4;) and not analytic on 4,. Let p,(z,) denote the best polynomial
approximant of degree <n to fon 4,. Then p,(z,) is a best approximant
of total degree <n to f considered as a function on E. Using the above
quoted result of Blatt-Saff it follows that

1
lim ~log|p,(z))|=log|z,|  for [z;[>1
n

n— oo

so it follows that Z={(z,,z,)eC?:|z,| <1}. Note that Z n E does not
contain either the topological or Silov boundary of E, in contrast, to the
one-variable case.

THEOREM 3.5. Let f be holomorphic on Eg and let E;e be the union of
those components of Eg, where f is not identically equal to zero. Let {p,}
be_a sequence of best uniform approximants to f on E. Let zy€
O0Er nO(int(Z)). Then there exists a sequence of points {z,} with
lim z,=zq and p,(z,)=0.

n— oo n

Proof. The proof is by contradiction. Suppose that z is not such a limit
point. Then there is a ball B centred at z, such that p, #0 on B for n>n,.
Chose an analytic branch of p!”* on B. For some constant M, >0 we have

n

v(z) < M, for all ze B. Hence

1
|pir(z)| =exp <n log |pn(z)|> <exp2M, for all n>=n,y(M,) (3.12)

and the sequence {pY”} is a uniformly bounded sequence of analytic func-

tions on B. Now B £ int(Z), so there is a point z; € B where lim sup,,_, . 1/n
log | p,(z,)] > 0 since lim sup,,_, , 1/nlog |p,(z)| =v(z), except possibly on
a pluripolar set.
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Chose a subsequence J < N, such that
.1
lim-log |p,(z,)| >0 (3.13)
neJ N

Let J; be a subsequence of J such that the uniformly bounded sequence of
analytic functions {p%"(z)},,, converges uniformly on compact subsets of

n

B to an analytic function, denoted g(z). Then
1
log |g(z)| = lim Zlog |p.(2)], for zeB, (3.14)
neldp

so |g(zy)|>1 and |g(z)| <1 for zeint(Z) n B.

Thus g is not constant on B and so by the maximum modulus principle
lg(z)]<1 on int(Z)nB. This implies that lim,.,|p,(z)|"" <1, for
zeint(Z) N B, and so lim,.,|p,(z)|=0. But on B Eg, the sequence
{p,} converges to f uniformly on compact subsets. Hence f=0 on B E,
which contradicts the assumption that f'is not identically zero on any com-
ponent of Ex. ||

The above proof is based on the proof of Theorem 2.2 in [ BS]. See also
[ Wa, theorem 2].

Let E < C" be a compact, regular set and let u be a finite Borel measure
such that (E, u) satisfies (BM). Let ¢ satisfy 1 < ¢ < co.

Proceeding in the same manner as in the proof of Theorem 3.5, one
easily proves

COROLLARY 3.6. Let f be holomorphic on Eg and let EN; be the union of
connected components of E g where f is not identically equal to zero. Let { f,}
be a sequence of best approximants to f on E in the norm |-, ,. Let

zo €0 I;“VR NO(int(Z,)). Then there exists a sequence of points {z,} such that
lim,,_, o, z,=z¢ and f,(z,) =0.

Remark 3.7. Let f be holomorphic on E, but not on E| (for any s> R).
Let {p,} be a sequence of best uniform approximants to f on E. Let
zo €0Eg nO(int(Z)) and let a be a complex number such that there is a
connected component of E; with z, in its closure and f is not identically
equal to o on that component. Then there exists a sequence of points z,(a)
such that lim, _, o, z,(a) =2z, and p,(z,(a))=0.

This is because p, —a is a best approximant from P, to f—a«. This, in
turn, shows that the sequence of best approximants {p,} have “the
behaviour of an essential singularity” at every point of JEz nd(int(Z)).
Precisely, for every point z, e 0Ex N d(int(Z)) and every neighborhood N
of z, the values (J°_, p,(V) are equal to C or omit at most one complex
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number. In particular the sequence {p,} does not converge uniformly on
any neighborhood of z, although the function f may have an analytic
extension to a neighborhood of z,.

Similarly, the sequence of best approximants { f,} has “the behavior of
an essential singularity” at every point of Ex nd(int(Z,,)).

We now turn to the case that f'is not analytic on E. We will give a multi-
variable version of ([BS, Theorem 2.27). That result is valid for E a
regular, compact, polynomially convex subset of C whereas our generaliza-
tion requires an additional hypothesis on E. (We conjecture Theorem 3.8
to be valid without this additional hypothesis).

We introduce:

For all z € E and any ball B centered at z, there is a connected
component E'of B n E which is not pluripolar. (3.15)

THEOREM 3.8. Let fe W(E) and suppose f is not analytic on E. Assume
that E satisfies (3.15). Let zy €0Z N E be such that f(zy)#0. Then there
exists a sequence of points {z,}, such that lim,,_, ,, z, =z, and p,(z,) =0, for
n=1,2,3, ..

Proof. Note that for f'e W(E) if f'is not analytic on E then, by Lemma
3.3, 0Z n E # . The proof is by contradiction. Suppose that z, is not such
a limit point. Proceeding as in the proof of Theorem 3.5 we may assume
there is a ball B, with center z,, sufficiently small radius and an integer 7,
such that

|f(z)—f(zo)|<‘f(i°) for zeEnB (3.16)
and

|pn(z)—f(zo)|<‘f(§o) for zeEnB (3.17)
for n>n,.

Furthermore we may assume p,(z) has no zero on B for n>n,. For
n>=n; we choose an analytic branch of log p,(z) on B.

As in the proof of Theorem 3.5, we may assume there is a subsequence
J; =N such that

g,(z) :=lim exp <:l log p,,(z)> (3.18)

neldy

is analytic and non constant on B.
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Let log; be an analytic branch of the logarithm function on the set

)}

2
Then log,(p,(z)) is defined for ze En B and n>n,. Now

G={re@| e f(z0)] <

1
32 L10g1(py(2)) —log(p,(2)]
i

is continuous on E N B and integer-valued. Hence it must be constant on
E' (by hypothesis (3.15) this is a connected component of En B). Let
t, € Z denote its value.

We then consider the functions log(p, (z) + 2=it,) and we may choose a
subsequence J, = J; so that

. 1 .
g,(z) := hn} exp <n (log(pn(z)> + 2nit,)) (3.19)
nelJy

is analytic on B.

But Im(log(p,(z)+ 2nit,)) is bounded on E’ since Im(log;(7)) is
bounded on G. Thus g,(z)=1 for all ze E’' and since E’ is not pluripolar,

g,(z)=1 for all zeB. But g,(z)=cg,(z) for some constant ¢, |c|=1.
Hence g,(z) is constant on B. This contradiction establishes the result. ||

Remark 3.9. Note that Theorem 3.8 is also valid under the hypothesis
(3.20) below rather than (3.15):

For all z e E and all balls B centered at z, £ B is not (3.20)
contained in a proper real-analytic subvariety of B.

This is because EnBc{zeB||g,(z)|=1} and g, is non-constant,
analytic on B.
Under the hypothesis of Theorem 3.8, we may conclude the following:

Remark 3.10. Given any complex number a and z,€0Zn E with
f(zy) #o there exists a sequence of points z, () satisfying lim,, _, ., z,,(a) =z,
and p,(z,(a)) = (see Remark 3.7).
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