On the Zeros of Polynomials of Best Approximation

Thomas Bloom¹

Department of Mathematics, University of Toronto, Toronto, Canada M5S 3G3 E-mail: bloom@math.utoronto.ca

and

Jerzy Szczepański²

Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Krakow, Poland E-mail: szczepan@im.uj.edu.pl

Received July 20, 1998; accepted in revised form March 25, 1999

Given a function f, uniform limit of analytic polynomials on a compact, regular set $E \subset \mathbb{C}^N$, we relate analytic extension properties of f to the location of the zeros of the best polynomial approximants to f in either the uniform norm on E or in appropriate L^q norms.

These results give multivariable versions of one-variable results due to Blatt-Saff, Pleśniak and Wójcik. © 1999 Academic Press

Key Words: best polynomial approximant; pluripotential theory.

0. INTRODUCTION

Let $E \subset \mathbb{C}^N$ be compact and regular (in the sense of pluripotential theory). Let W(E) denote the closure in the uniform norm on E of $P(\mathbb{C}^N)$ (where $P(\mathbb{C}^N)$ denotes the analytic polynomials on \mathbb{C}^N). For $f \in W(E)$ we let $p_n(z)$ denote a best approximant to f from P_n , n = 1, 2, 3, ..., where P_n denotes the analytic polynomials of total degree $\leq n$. Given a positive Borel measure μ on E we let f_n denote the best approximant from P_n to f in $L^2(d\mu)$

In this paper we will study the relation between analytic extension properties of f and zeros of the sequences $\{p_n(z)\}$ or $\{f_n(z)\}$.

Let $V_E(z)$ denote the pluricomplex Green function of E (see (1.1) for the definition).

¹ Research supported by a NSERC of Canada Grant.

² Partially supported by KBN Grant No. 2 P03A 045 14 (Committee for Scientific Research).

For R > 1, we let

$$E_R = \{ z \in \mathbb{C}^N \mid V_E(z) < \log R \}.$$

$$(0.1)$$

We will study analytic extension of f to open sets of the form E_R , i.e., does there exist F, analytic on E_R with $F/_E = f$?

In one variable, $V_E(z)$ is the Green function of $\mathbb{C}\setminus \hat{E}$ with a logarithmic pole at ∞ (and extended by zero on \hat{E}), where \hat{E} denotes the polynomial convex hull of E. In the one variable case, there are extensive results due to S. N. Bernstein, H.-P. Blatt–E. Saff, P. Borwein, W. Pleśniak and A. Wójcik (see references). Roughly speaking, f has an analytic extension to E_R if and only if almost all zeros of $\{p_n\}$ or $\{f_n\}$ lie in $\mathbb{C}\setminus E_R$. If f is not analytic on E (i.e., does not have an analytic extension to a neighborhood of E) then every point on $\partial \hat{E}$ is a limit point of the zeros of $\{p_n\}$. The precise statements must discount zeros in the interior of \hat{E} , and must be modified if f is identically zero on a component of the interior of \hat{E} .

Specific one variable results (reformulated) are as follows

THEOREM 0.1 (Wójcik [W]). *f* has an analytic extension to E_R if the zeros of $\{p_n\}$ have no point of accumulation in E_R .

THEOREM 0.2 (Blatt–Saff [BS]). Suppose f is not analytic on E and for some $z_0 \in \partial \hat{E}$, $f(z_0) \neq 0$. Then there exists a sequence of points $\{z_n\}$ with $\lim_{n\to\infty} z_n = z_0$ and $p_n(z_n) = 0$.

THEOREM 0.3 (Pleśniak [P]). Let μ be a finite Borel measure on E which satisfies the Leja polynomial condition (see [P] for the definition). Then f has an analytic extension to E_R if the zeros of $\{f_n\}$ have no point of accumulation in E_R .

In this paper we will give multivariable versions of these results. Theorem 3.5 and Corollary 3.6 generalize theorems 0.1 and 0.3. In Corollary 3.6, the hypothesis that μ satisfy the Bernstein–Markov condition is a less stringent on μ than requiring it to satisfy the Leja polynomial condition (see [Bl1]). Theorem 3.8 is a multivariable version of Theorem 0.2. In Theorem 3.8 an additional hypothesis is required (see (3.15) or (3.20)) on the set *E*.

We also prove (Theorem 2.1) an L^q analogue of a result on Tchebyshev polynomials ([Bl2, Theorem 3.1]; [Si3]). This is used in the proof of Corollary 3.6 but is of independent interest.

1. PRELIMINARIES

Let $E \subset \mathbb{C}^N$ be a compact set. Let V_E denote its pluricomplex extremal function, i.e.

$$V_E(z) = \sup \left\{ u(z) : u \in \mathscr{L}, u/_E \leq 0 \right\},$$
(1.1)

where \mathscr{L} denotes the Lelong class of plurisubharmonic functions satisfying

$$\sup_{z \in \mathbb{C}^N} u(z) - \log^+ |z| < \infty, \tag{1.2}$$

where $|\cdot|$ denotes the Euclidean norm in \mathbb{C}^N .

We shall assume that E is regular, i.e., the function V_E is continuous. This implies that E is not pluripolar. Recall that a set $E \subset \mathbb{C}^N$ is said to be pluripolar if for every $a \in E$ there is a neighborhood V of a and a plurisubharmonic function u on V such that $E \cap V \subset \{z \in V \mid u = -\infty\}$. Pluripolar sets have Lebesgue (2n-dimensional) measure zero [K, Cor. 2.9.107.

Let μ be a finite Borel measure on E such that the pair (E, μ) satisfies the Bernstein–Markov condition (BM), i.e., for any $\varepsilon > 0$ and q, $0 < q < \infty$, there exists $A = A(\varepsilon, q)$ such that

$$\|p\|_{E} \leqslant A(1+\varepsilon)^{\deg(p)} \|p\|_{\mu,q}$$

$$(1.3)$$

for all polynomials $p \in P(\mathbb{C}^N)$, where

$$\|p\|_{\mu,q} = \left(\int_{E} |p(z)|^{q} d\mu\right)^{1/q}.$$
(1.4)

It is known (see [B11, Remark 3.2]) that if μ satisfies (BM) for one exponent $q, 0 < q < \infty$, then it satisfies (BM) for all $q, 0 < q < \infty$.

Let $L_P^q(E,\mu)$, $1 \leq q < \infty$, denote the continuous functions on E that are

limits of polynomials in the norm $|| ||_{\mu,q}$. Of course, $W(E) \subset L_P^q(E,\mu)$. Let f be a continuous function on E. We denote by $p_n \in P_n$ and $f_n \in P_n$, respectively, polynomials of degree at most $n \in \mathbb{N}_0$ of best approximation in the uniform norm and the norm $\|\cdot\|_{u,a}$, respectively, i.e.

$$\|f - p_n\|_E = \inf \{ \|f - q_n\|_E, q_n \in P_n \},$$
(1.5)

$$\|f - f_n\|_{\mu, q} = \inf \{ \|f - q_n\|_{\mu, q}, q_n \in P_n \}.$$
(1.6)

These best approximants are not necessarily unique.

From the Bernstein–Walsh–Siciak theorem [Si1, Theorem 10.3] and *the* Bernstein–Walsh inequality (BW)

$$|p(z)| \leq ||p||_E (\exp V_E(z))^{\deg p}, \quad \text{for} \quad z \in \mathbb{C}^N \quad \text{and} \quad (1.7)$$

for all polynomials $p \in P(\mathbb{C}^N)$ (see, eg., [Si2, 2.11] or [K, 5.1]) we conclude the following

Remark 1.1. (cf. [Si2, Corollary 8.6]) Let $E \subset \mathbb{C}^N$ be a compact, regular set and let μ be a Borel measure such that (E, μ) satisfies (BM). Let f be a continuous function on E and R > 1. If f admits an analytic extension onto E_R , denoted F, then the sequences of polynomials of best approximation $\{p_n\}$ and $\{f_n\}$ in the norms $\|\cdot\|_E$ and $\|\cdot\|_{\mu,q}$ are uniformly bounded on compact subsets of E_R and, for 1 < r < R, we have

$$\limsup_{n \to \infty} \|F - p_n\|_{\overline{E_r}}^{1/n} \leqslant \frac{r}{R}$$
(1.8)

and

$$\limsup_{n \to \infty} \|F - f_n\|_{\overline{E_r}}^{1/n} \leq \frac{r}{R}.$$
(1.9)

We shall denote by \hat{r}_n the homogeneous part of degree *n* of the polynomial $r_n(z) = \sum_{|\alpha| \le n} a_{\alpha} z^{\alpha}$, i.e., $\hat{r}_n(z) = \sum_{|\alpha| = n} a_{\alpha} z^{\alpha}$. If deg $r_n < n$ we put $\hat{r}_n(z) \equiv 0$.

For a homogeneous polynomial $h_n(z) = \sum_{|\alpha|=n} a_{\alpha} z^{\alpha}$ we define the *Tchebyshev polynomials* associated with h_n and the norms $\|\cdot\|_E$, $\|\cdot\|_{\mu,q}$, respectively, by

$$Tch_E h_n(z) = h_n(z) - r_{n-1},$$
 (1.10)

$$Tch_{\mu,q}h_n(z) = h_n(z) - s_{n-1},$$
 (1.11)

where $r_{n-1}, s_{n-1} \in P_{n-1}$ are polynomials of best approximation to h_n in the norms $\|\cdot\|_E$ and $\|\cdot\|_{\mu,q}$, respectively, i.e.

$$\|h_n(z) - r_{n-1}\|_E = \inf \{ \|h_n(z) - p_{n-1}\|_E, p_{n-1} \in P_{n-1} \},\$$

$$\|h_n(z) - s_{n-1}\|_{\mu, q} = \inf \{ \|h_n(z) - p_{n-1}\|_{\mu, q}, p_{n-1} \in P_{n-1} \}.$$

In general, Tch_Eh_n and $Tch_{\mu,q}h_n$ need not be unique (except for q=2, since $L_P^2(E,\mu)$ is a Hilbert space, thus s_{n-1} is the orthogonal projection of h_n on P_{n-1}), however the norms $||Tch_Eh_n||_E$ and $||Tch_{\mu,q}h_n||_{\mu,q}$ are unambiguously defined.

LEMMA 1.2 (see also [Sz, Lemma 5.2]). Let (E, μ) satisfy the Bernstein–Markov condition. Let $\{h_n\}_{n=1,2,3}, \cdots$ be a sequence of homogeneous polynomials of degree n. Let q satisfy $1 \leq q < \infty$. Then

$$\begin{split} \limsup_{n \to \infty} \|Tch_E h_n\|_E^{1/n} &= \limsup_{n \to \infty} \|Tch_E h_n\|_{\mu, q}^{1/n} = \limsup_{n \to \infty} \|Tch_{\mu, q} h_n\|_E^{1/n} \\ &= \limsup_{n \to \infty} \|Tch_{\mu, q} h_n\|_{\mu, q}^{1/n}. \end{split}$$

Proof. From (BM) we have, for every $\varepsilon > 0$

$$\|Tch_{\mu,q}h_n\|_E \leq A(1+\varepsilon)^n \|Tch_{\mu,q}h_n\|_{\mu,q}.$$
 (1.12)

Since $Tch_{\mu,q}h_n$ is a competitor for Tch_Eh_n we have

$$\|Tch_{E}h_{n}\|_{E} \leq \|Tch_{\mu, q}h_{n}\|_{E}.$$
(1.13)

Similarly

$$\|Tch_{\mu,q}h_n\|_{\mu,q} \leq \|Tch_Eh_n\|_{\mu,q}.$$
(1.14)

Since $\mu(E) < +\infty$ we have

$$\|Tch_E h_n\|_{\mu, q} \leq \mu(E)^{1/q} \|Tch_E h_n\|_E$$
(1.15)

Now, (1.12) and (1.13) imply

$$\limsup_{n \to \infty} \|Tch_E h_n\|_E^{1/n} \leqslant \limsup_{n \to \infty} \|Tch_{\mu, q} h_n\|_E^{1/n} \leqslant \limsup_{n \to \infty} \|Tch_{\mu, q} h_n\|_{\mu, q}^{1/n}$$

Also, (1.14) and (1.15) imply

 $\limsup_{n \to \infty} \|Tch_{\mu, q}h_n\|_{\mu, q}^{1/n} \leq \limsup_{n \to \infty} \|Tch_Eh_n\|_{\mu, q}^{1/n} \leq \limsup_{n \to \infty} \|Tch_Eh_n\|_E^{1/n}.$ The result follows.

For $u \in \mathcal{L}$ we define the Robin function associated with u by

$$\rho_{u}([z]) = \limsup_{\substack{|\lambda| \to \infty \\ \lambda \in \mathbb{C}}} u(\lambda z) - \log^{+} |\lambda z|, \quad \text{for} \quad z \in \mathbb{C}^{N} \setminus \{0\}, \quad (1.16)$$

where $[\cdot]: \mathbb{C}^N \setminus \{0\} \ni z \to [z] \in \mathbb{P}^{N-1}$ denotes the natural map and \mathbb{P}^{N-1} denotes complex projective (N-1)-space.

It is seen that if $p_n \in P_n$ then $u_n(z) := 1/n \log |p_n(z)| \in \mathscr{L}$ and

$$\rho_{u_n}([z]) = \frac{1}{n} \log |\hat{p}_n(z)| - \log |z|, \quad \text{for} \quad z \neq 0.$$
 (1.17)

If deg $p_n < n$ then $\hat{p}_n(z) \equiv 0$ and we put $\rho_{u_n} \equiv -\infty$.

The Robin function of a compact, regular set *E*, denoted $\rho_E([z])$ is defined as the Robin function of $V_E(z)$.

2. AN APPLICATION OF THE ROBIN FUNCTION TO POLYNOMIAL APPROXIMATION—THE CASE OF L^q NORMS

We prove a counterpart of [Bl2, Theorem 3.1] in the case of the polynomial approximation in L^q -norms.

THEOREM 2.1. Let $E \subset \mathbb{C}^N$ be a compact, regular set and let μ be a Borel measure such that the pair (E, μ) satisfies (BM). Fix q, $1 \leq q < \infty$. Let $f \in L^p_P(E, \mu)$ and R > 1. The following conditions are equivalent

$$f$$
 extends analytically to E_R (2.1)

$$\limsup_{n \to \infty} \|f - f_n\|_{\mu, q}^{1/n} \leq \frac{1}{R}$$
(2.2)

$$\limsup_{n \to \infty} \|Tch_{\mu, q} \hat{f}_n\|_E^{1/n} \leqslant \frac{1}{R}$$
(2.3)

$$\limsup_{n \to \infty} \|Tch_{\mu,q}\hat{f}_n\|_{\mu,q}^{1/n} \leqslant \frac{1}{R}$$
(2.4)

 $\limsup_{n \to \infty} \frac{1}{n} \log |\hat{f}_n(z)| - \log |z| \le \rho_E([z]) - \log R, \quad \text{for all} \quad z \ne 0, \quad (2.5)$

where $\{f_n\}$ is a sequence of polynomials of best approximation in the norm $\|\cdot\|_{\mu,q}$.

The proof of the theorem is analogous to the proof of [Bl2, Theorem 3.1]

$$(2.1) \Rightarrow (2.2) \Rightarrow (2.4) \Rightarrow (2.2) \Rightarrow (2.1)$$
$$(2.3) \Leftrightarrow (2.4)$$
$$(2.3) \Rightarrow (2.5) \Rightarrow (2.4).$$

Proof. Assume (2.1). By the Bernstein-Walsh-Siciak theorem we get

$$\limsup_{n \to \infty} \|f - p_n\|_E^{1/n} \leq \frac{1}{R}, \qquad (2.6)$$

where $\{p_n\}$ is a sequence of polynomials of best uniform approximation to f on E. Since

$$\|f - f_n\|_{\mu, q} \leq \|f - p_n\|_{\mu, q} \leq (\mu(E))^{1/q} \|f - p_n\|_E,$$
(2.7)

we have

$$\limsup_{n \to \infty} \|f - f_n\|_{\mu, q}^{1/n} \leq \frac{1}{R},$$
 (2.8)

i.e., (2.2) holds.

Next, by the definition of the Tchebyshev polynomial $Tch_{\mu,q}\hat{f}_n$ and by (1.6), we get

$$\|Tch_{\mu, q}\hat{f}_{n}\|_{\mu, q} \leq \|f_{n} - f_{n-1}\|_{\mu, q}$$

$$\leq \|f_{n} - f\|_{\mu, q} + \|f - f_{n-1}\|_{\mu, q}$$

$$\leq 2 \|f - f_{n-1}\|_{\mu, q}$$
(2.9)

Thus, by (2.2),

$$\limsup_{n \to \infty} \|Tch_{\mu, q} \hat{f}_n\|_{\mu, q}^{1/n} \leq \limsup_{n \to \infty} \|f - f_n\|_{\mu, q}^{1/n} \leq \frac{1}{R},$$

and (2.4) follows.

Since the pair (E, μ) satisfies (BM), by Lemma 1.2, the conditions (2.3) and (2.4) are equivalent.

Assume (2.4). By the definition of the Tchebyshev polynomial $Tch_{\mu,q} \hat{f}_{n+1}$, we have

$$\|f - f_n\|_{\mu, q} \leq \|f - (f_{n+1} - Tch_{\mu, q}f_{n+1})\|_{\mu, q}$$

$$\leq \|f - f_{n+1}\|_{\mu, q} + \|Tch_{\mu, q}f_{n+1})\|_{\mu, q}.$$
 (2.10)

Since $||f - f_n||_{\mu, q} \ge ||f - f_{n+1}||_{\mu, q}$ and $\lim_{n \to \infty} ||f - f_n||_{\mu, q} = 0$, we have, by (2.4),

$$\limsup_{n \to \infty} \|f - f_n\|_{\mu, q}^{1/n} \leq \frac{1}{R},$$
(2.11)

i.e., (2.2) holds.

Next, suppose that (2.2) holds. Fix r, 1 < r < R, and then fix $\varepsilon > 0$ and ρ such that $(1 + \varepsilon) r < \rho < R$. By (2.2), there exists $n_0 = n_0(\rho)$ such that

$$\|f - f_n\|_{\mu, q} \leq \frac{1}{\rho^n} \quad \text{for} \quad n \geq n_0 .$$

$$(2.12)$$

By (BW),

$$\|f_{n+1} - f_n\|_{\overline{E_r}} \leq r^{n+1} \|f_{n+1} - f_n\|_E.$$
(2.13)

Next, by (BM), there exists $A_{\varepsilon} > 0$ such that

$$\|f_{n+1} - f_n\|_E \leq A_{\varepsilon} (1+\varepsilon)^{n+1} \|f_{n+1} - f_n\|_{\mu, q}, \text{ for all } n.$$
(2.14)

Since

$$\|f_{n+1} - f_n\|_{\mu, q} \leq \|f_{n+1} - f\|_{\mu, q} + \|f_n - f\|_{\mu, q} \leq 2\|f - f_n\|_{\mu, q}, \quad (2.15)$$

we get, for $n \ge n_0$, $||f_{n+1} - f_n||_{\overline{E_r}} \le 2A_{\varepsilon}\rho((1+\varepsilon)r/\rho)^{n+1}$. Thus, for all $M, n \ge n_0$, we have

$$\sum_{k=n}^{M} \|f_{k+1} - f_k\|_{\overline{E_r}} \leq C \left(\frac{(1+\varepsilon)r}{\rho}\right)^{n+1},$$
(2.16)

where $C = 2A_{\varepsilon}\rho^2(\rho - (1 + \varepsilon)r)^{-1}$. Since $(1 + \varepsilon)r < \rho$, the series

$$f_0 + \sum_{k=0}^{\infty} f_{k+1} - f_k$$

converges uniformly on $\overline{E_r}$. Since r < R has been chosen arbitrary, we conclude that f extends analytically to E_R . i.e., (2.1) follows.

Suppose that (2.3) holds. Fix r such that 1 < r < R. Then for $n \ge n_1(r)$ we have $||Tch_{\mu,q}\hat{f}_n||_E^{1/n} \le 1/r$ or

$$\log r + \frac{1}{n} \log |Tch_{\mu,q} \hat{f}_n(z)| \leq 0, \quad \text{for all} \quad z \in E.$$
 (2.17)

Hence, by the definition of the pluricomplex extremal function V_E (see (1.1)), we have

$$\log r + \frac{1}{n} \log |Tch_{\mu,q} \hat{f}_n(z)| \leq V_E(z), \quad \text{for all} \quad z \in \mathbb{C}^N.$$
(2.19)

Taking the Robin function of the both sides of (2.19) gives

$$\log r + \frac{1}{n} \log |\hat{f}_n(z)| - \log |z| \leq \rho_E([z]), \quad \text{for all} \quad z \in \mathbb{C}^N \setminus \{0\}.$$
(2.20)

Since it holds for all $n \ge n_1(r)$ and all r < R we get (2.5).

It remains to prove $(2.5) \Rightarrow (2.4)$. This follows from the following

LEMMA 2.2 (cf. [Bl2, Theorem 3.2]). Let $E \subset \mathbb{C}^N$ be a compact, regular set and let μ be a Borel measure such that (E, μ) satisfies (BM). Let q satisfy $1 \leq q < \infty$. Let h_n be a sequence of homogeneous polynomials satisfying deg $h_n = n$ or $h_n(z) \equiv 0$, for all $n \in \mathbb{N}_0$. Let R > 1. If

$$\limsup_{n \to \infty} \frac{1}{n} \log |h_n(z)| - \log |z| \leq \rho_E([z]) - \log R, \quad \text{for all} \quad z \in \mathbb{C}^N \setminus \{0\}$$
(2.21)

then

$$\limsup_{n \to \infty} \|Tch_{\mu, q}h_n\|_{\mu, q}^{1/n} \leq \frac{1}{R}.$$
 (2.22)

Recall (1.13) that if $h_n(z) \equiv 0$ we put $1/n \log |h_n(z)| - \log |z| \equiv -\infty$.

Proof of of Lemma 2.2. From [Bl2, Theorem 3.1] (2.21) we have that

$$\limsup_{n \to \infty} \|Tch_E h_n\|_E^{1/n} \leq \frac{1}{R}$$

and the result now follows from Lemma 1.2.

Putting $h_n := \hat{f}_n$ in the above lemma gives the implication (2.5) \Rightarrow (2.4). This completes the proof of Theorem 2.1.

3. ZEROS OF POLYNOMIALS OF BEST APPROXIMATION

Let *E* be a compact, regular subset of \mathbb{C}^N , $f \in W(E)$ and $\{p_n\}$ a sequence of best approximants to *f* in the uniform norm on *E*. We will relate the location of the zeros of $\{p_n\}$ to the analytic extension properties of *f*.

First we consider

$$v(z) := \left(\limsup_{n \to \infty} \frac{1}{n} \log |p_n(z)|\right)^*$$
(3.1)

where $()^*$ denotes upper semi-continuous regularization. (Recall that $(g(z))^* = \overline{\lim}_{\xi \to z} g(\xi)$.)

The sequence $\{p_n\}$ is uniformly bounded on *E*. Since *E* is non pluripolar, $\{p_n(z)\}$ is locally bounded from above on \mathbb{C}^N by (BW), and so $v \in \mathscr{L}$ [K, prop. 5.2.1].

Let

$$Z := \{ z \in \mathbb{C}^N \mid v(z) \leqslant 0 \}$$

$$(3.2)$$

and we let int(Z) denote the interior of the set Z. Let R > 1. We have

LEMMA 3.1. The function f extends to a holomorphic function on E_R if and only if $int(Z) \supset E_R$.

Proof. Suppose that $E_R \subset int(Z)$. Let 1 < r < R. Then $\overline{E_r} \subset int(Z)$. Since

$$\limsup_{n \to \infty} \frac{1}{n} \log |p_n(z)| \le 0 \qquad \text{on} \quad \overline{E_r}$$

we have by Hartogs lemma, given $\varepsilon > 0$, there exists $n_0(\varepsilon)$

$$\frac{1}{n}\log|p_n(z)| \le \varepsilon, \quad \text{for} \quad n \ge n_0(\varepsilon) \quad \text{and} \quad z \in \overline{E_r}$$
(3.3)

and

$$\frac{1}{n}\log|p_n(z)| \leq \varepsilon + V_{\overline{E_r}}(z) \quad \text{for} \quad z \in \mathbb{C}^N \quad \text{and} \quad n \geq n_0 \;. \tag{3.4}$$

Taking the Robin function of both sides of the above inequality gives

$$\frac{1}{n}\log|\hat{p}_n(z)| - \log|z| \leq \varepsilon + \rho_{\overline{E}_r}([z]) \quad \text{for} \quad n \ge n_0.$$
(3.5)

Recall that since E is regular,

$$V_{\overline{E}_r}(z) = \max\{V_E(z) - \log r, 0\}$$
(3.6)

and

$$\rho_{\overline{E}_r}([z]) = \rho_E([z]) - \log r, \quad \text{for all} \quad z \neq 0.$$
(3.7)

Using (3.5) and (3.7) gives

$$\frac{1}{n}\log|\hat{p}_n(z)| - \log|z| \leq \varepsilon + \rho_E([z]) - \log r \quad \text{for} \quad n \ge n_0.$$
(3.8)

Hence, for all $\varepsilon > 0$, we have

$$\limsup_{n \to \infty} \frac{1}{n} \log |\hat{p}_n(z)| - \log |z| \le \varepsilon + \rho_E([z]) - \log r$$
(3.9)

This implies

$$\limsup_{n \to \infty} \frac{1}{n} \log |\hat{p}_n(z)| - \log |z| \le \rho_E([z]) - \log r$$
(3.10)

Then, by [Bl2, Theorem 3.1] f extends analytically to E_r . Since (3.10) is valid for any r < R, the function f extends analytically to E_R .

Conversely, if f extends analytically to E_R , by Remark 1.1, the sequence $\{p_n\}$ is uniformly bounded on $\overline{E_r}$, for all r < R. Thus, $v \le 0$ on $\overline{E_r}$ and since $\bigcup_{r < R} \overline{E_r} \subset E_R$, we have $v \le 0$ on E_R and so $E_R \subset int(Z)$, since E_R is open (cf. 1.1).

Let $E \subset \mathbb{C}^N$ be a compact, regular set and let μ be a finite Borel measure such that (E, μ) satisfies (BM). Let q satisfy $1 \leq q < \infty$. Let $\{f_n\}$ be a sequence of polynomials of best approximation in the norm $\|\cdot\|_{\mu,q}$ to a function $f \in L^q_P(E, \mu)$. We put

$$v_{\mu}(z) := \left(\limsup_{n \to \infty} \frac{1}{n} \log |f_n(z)|\right)^*$$
(3.11)

The sequence $\{f_n(z)\}$ is uniformly bounded in $L^q(E, \mu)$. Using (BM) we conclude that $\limsup_{n \to \infty} ||f_n||_E^{1/n} \leq 1$ so $v_{\mu} \in \mathscr{L}$ (by [Bl1, Lemma 3.2] and [K, prop. 5.2.1]).

Let $Z_{\mu} = \{z \in \mathbb{C}^N : v_{\mu}(z) \leq 0\}$. Let $int(Z_{\mu})$ denote the interior of the set Z_{μ} .

LEMMA 3.2. Let $f \in L^q_P(E, \mu)$. Let R > 1. The function f extends analytically to E_R if and only if $int(Z_\mu) \supset E_R$.

The proof of the above lemma is analogous to the proof of Lemma 3.1. To prove that $E_R \subset int(Z_\mu)$ implies that f extends analytically to E_R , one should repeat (3.3)–(3.10) putting $\{f_n\}$ instead of $\{p_n\}$ and use Theorem 2.1 in (3.10) instead of [Bl2, Theorem 3.1]. The converse implication follows from Remark 1.1.

LEMMA 3.3. (i) $Z \supset E$ and $Z_{\mu} \supset E$.

(ii) Let $f \in W(E)$ not be analytic on E. Then $\partial Z \cap E \neq \emptyset$. Similarly for $f \in L^q_P(E, \mu)$ and f not analytic on E, then $\partial Z_{\mu} \cap E \neq \emptyset$.

(iii) Let $f \in W(E)$ have an analytic extension to E_R (for some R > 1) but not to E_s for any s > R. Then $\partial E_R \cap \partial(int(Z)) \neq \emptyset$ and $\partial E_R \cap \partial(int(Z_\mu)) \neq \emptyset$.

Proof. (i) To show that $Z \supset E$ we must show that $v \leq 0$ on E.

The sequence $\{p_n(z)\}$ is uniformly bounded on E so $\limsup_{n \to \infty} 1/n \log |p_n(z)| \le 0$ on E. Since negligible sets are pluripolar [K, Cor 4.6.2] we have $v \le 0$ on $E \setminus N$, where N is pluripolar, so $v \le V_{E \setminus N}^*$. But by [K, Cor 5.2.5] $V_{E \setminus N}^* = V_E$ and $V_E \equiv 0$ on E.

The proof that $Z_{\mu} \supset E$ is similar.

(ii) That $\partial Z \cap E \neq \emptyset$ follows from (i) and Lemma 3.1. That $\partial Z_{\mu} \cap E \neq \emptyset$ follows from (i) and Lemma 3.2.

(iii) This follows from Lemmas 3.1 and 3.2.

EXAMPLE 3.4. Let *E* be a compact, regular subset of \mathbb{C} and let $f \in W(E)$ not be analytic on *E*. Then it follows from ([BS, Theorem 2.1 and Lemma 4.2]) that *v* (defined by (3.1)) is the Green function of $\mathbb{C}\setminus \hat{E}$ and that $Z = \hat{E}$.

In the multivariable case we will give an example of $f \in W(E)$, not analytic on E but where $Z \neq E$ (E will be polynomially convex so that $E = \hat{E}$).

Let *E* be the unit ball in \mathbb{C}^2 . $E = \{(z_1, z_2) : |z_1|^2 + |z_2|^2 \leq 1\}$ and let $f = f(z_1)$ be a function continuous on $\Delta_1 = \{z_1 \in \mathbb{C} : |z_1| \leq 1\}$ analytic on int (Δ_1) and not analytic on Δ_1 . Let $p_n(z_1)$ denote the best polynomial approximant of degree $\leq n$ to f on Δ_1 . Then $p_n(z_1)$ is a best approximant of total degree $\leq n$ to f considered as a function on *E*. Using the above quoted result of Blatt-Saff it follows that

$$\lim_{n \to \infty} \frac{1}{n} \log |p_n(z_1)| = \log |z_1| \quad \text{for} \quad |z_1| \ge 1$$

so it follows that $Z = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| \leq 1\}$. Note that $\partial Z \cap E$ does not contain either the topological or Silov boundary of *E*, in contrast, to the one-variable case.

THEOREM 3.5. Let f be holomorphic on E_R and let \widetilde{E}_R be the union of those components of E_R , where f is not identically equal to zero. Let $\{p_n\}$ be a sequence of best uniform approximants to f on E. Let $z_0 \in \partial \widetilde{E}_R \cap \partial(\operatorname{int}(Z))$. Then there exists a sequence of points $\{z_n\}$ with $\lim_{n\to\infty} z_n = z_0$ and $p_n(z_n) = 0$.

Proof. The proof is by contradiction. Suppose that z_0 is not such a limit point. Then there is a ball *B* centred at z_0 such that $p_n \neq 0$ on *B* for $n \ge n_1$. Chose an analytic branch of $p_n^{1/n}$ on *B*. For some constant $M_1 > 0$ we have $v(z) \le M_1$, for all $z \in \overline{B}$. Hence

$$|p_n^{1/n}(z)| = \exp\left(\frac{1}{n}\log|p_n(z)|\right) \leq \exp 2M_1 \quad \text{for all} \quad n \ge n_2(M_1) \quad (3.12)$$

and the sequence $\{p_n^{1/n}\}\$ is a uniformly bounded sequence of analytic functions on *B*. Now $B \not \equiv \operatorname{int}(Z)$, so there is a point $z_1 \in B$ where $\limsup_{n \to \infty} 1/n$ $\log |p_n(z_1)| > 0$ since $\limsup_{n \to \infty} 1/n \log |p_n(z)| = v(z)$, except possibly on a pluripolar set. Chose a subsequence $J \subset \mathbb{N}_0$ such that

$$\lim_{n \in J} \frac{1}{n} \log |p_n(z_1)| > 0$$
(3.13)

Let J_1 be a subsequence of J such that the uniformly bounded sequence of analytic functions $\{p_n^{1/n}(z)\}_{n \in J_1}$ converges uniformly on compact subsets of B to an analytic function, denoted g(z). Then

$$\log |g(z)| = \lim_{n \in J_1} \frac{1}{n} \log |p_n(z)|, \quad \text{for} \quad z \in B,$$
(3.14)

so $|g(z_1)| > 1$ and $|g(z)| \leq 1$ for $z \in int(Z) \cap B$.

Thus g is not constant on B and so by the maximum modulus principle |g(z)| < 1 on $\operatorname{int}(Z) \cap B$. This implies that $\lim_{n \in J_1} |p_n(z)|^{1/n} < 1$, for $z \in \operatorname{int}(Z) \cap B$, and so $\lim_{n \in J_1} |p_n(z)| = 0$. But on $B \cap E_R$, the sequence $\{p_n\}$ converges to f uniformly on compact subsets. Hence $f \equiv 0$ on $B \cap \widetilde{E}_R$, which contradicts the assumption that f is not identically zero on any component of \widetilde{E}_R .

The above proof is based on the proof of Theorem 2.2 in [BS]. See also [Wa, theorem 2].

Let $E \subset \mathbb{C}^N$ be a compact, regular set and let μ be a finite Borel measure such that (E, μ) satisfies (BM). Let q satisfy $1 \leq q < \infty$.

Proceeding in the same manner as in the proof of Theorem 3.5, one easily proves

COROLLARY 3.6. Let f be holomorphic on E_R and let \widetilde{E}_R be the union of connected components of E_R where f is not identically equal to zero. Let $\{f_n\}$ be a sequence of best approximants to f on E in the norm $\|\cdot\|_{\mu,q}$. Let $z_0 \in \partial \widetilde{E}_R \cap \partial(\operatorname{int}(Z_\mu))$. Then there exists a sequence of points $\{z_n\}$ such that $\lim_{n\to\infty} z_n = z_0$ and $f_n(z_n) = 0$.

Remark 3.7. Let f be holomorphic on E_R but not on E_s (for any s > R). Let $\{p_n\}$ be a sequence of best uniform approximants to f on E. Let $z_0 \in \partial E_R \cap \partial(\operatorname{int}(Z))$ and let α be a complex number such that there is a connected component of E_R with z_0 in its closure and f is not identically equal to α on that component. Then there exists a sequence of points $z_n(\alpha)$ such that $\lim_{n \to \infty} z_n(\alpha) = z_0$ and $p_n(z_n(\alpha)) = 0$.

This is because $p_n - \alpha$ is a best approximant from P_n to $f - \alpha$. This, in turn, shows that the sequence of best approximants $\{p_n\}$ have "the behaviour of an essential singularity" at every point of $\partial E_R \cap \partial(\operatorname{int}(Z))$. Precisely, for every point $z_0 \in \partial E_R \cap \partial(\operatorname{int}(Z))$ and every neighborhood N of z_0 the values $\bigcup_{n=1}^{\infty} p_n(V)$ are equal to \mathbb{C} or omit at most one complex

number. In particular the sequence $\{p_n\}$ does not converge uniformly on any neighborhood of z_0 although the function f may have an analytic extension to a neighborhood of z_0 .

Similarly, the sequence of best approximants $\{f_n\}$ has "the behavior of an essential singularity" at every point of $\partial E_R \cap \partial(\operatorname{int}(Z_\mu))$.

We now turn to the case that f is not analytic on E. We will give a multivariable version of ([BS, Theorem 2.2]). That result is valid for E a regular, compact, polynomially convex subset of \mathbb{C} whereas our generalization requires an additional hypothesis on E. (We conjecture Theorem 3.8 to be valid without this additional hypothesis).

We introduce:

For all $z \in E$ and any ball *B* centered at *z*, there is a connected component *E*' of $\overline{B} \cap E$ which is not pluripolar. (3.15)

THEOREM 3.8. Let $f \in W(E)$ and suppose f is not analytic on E. Assume that E satisfies (3.15). Let $z_0 \in \partial Z \cap E$ be such that $f(z_0) \neq 0$. Then there exists a sequence of points $\{z_n\}$, such that $\lim_{n \to \infty} z_n = z_0$ and $p_n(z_n) = 0$, for n = 1, 2, 3, ...

Proof. Note that for $f \in W(E)$ if f is not analytic on E then, by Lemma 3.3, $\partial Z \cap E \neq \emptyset$. The proof is by contradiction. Suppose that z_0 is not such a limit point. Proceeding as in the proof of Theorem 3.5 we may assume there is a ball B, with center z_0 , sufficiently small radius and an integer n_1 such that

$$|f(z) - f(z_0)| < \left| \frac{f(z_0)}{4} \right| \quad \text{for} \quad z \in E \cap \overline{B}$$
(3.16)

and

$$|p_n(z) - f(z_0)| < \left| \frac{f(z_0)}{2} \right| \qquad \text{for} \quad z \in E \cap \overline{B} \tag{3.17}$$

for $n \ge n_1$.

Furthermore we may assume $p_n(z)$ has no zero on *B* for $n \ge n_1$. For $n \ge n_1$ we choose an analytic branch of log $p_n(z)$ on *B*.

As in the proof of Theorem 3.5, we may assume there is a subsequence $J_1 \subset \mathbb{N}$ such that

$$g_1(z) := \lim_{n \in J_1} \exp\left(\frac{1}{n}\log p_n(z)\right)$$
(3.18)

is analytic and non constant on B.

Let log_1 be an analytic branch of the logarithm function on the set

$$G = \left\{ \tau \in \mathbb{C} \mid |\tau - f(z_0)| < \left| \frac{f(z_0)}{2} \right| \right\}.$$

Then $\log_1(p_n(z))$ is defined for $z \in E \cap \overline{B}$ and $n \ge n_1$. Now

$$\frac{1}{2\pi i} \left[\log_1(p_n(z)) - \log(p_n(z)) \right]$$

is continuous on $E \cap \overline{B}$ and integer-valued. Hence it must be constant on E' (by hypothesis (3.15) this is a connected component of $E \cap \overline{B}$). Let $t_n \in \mathbb{Z}$ denote its value.

We then consider the functions $\log(p_n(z) + 2\pi i t_n)$ and we may choose a subsequence $J_2 \subset J_1$ so that

$$g_2(z) := \lim_{n \in J_2} \exp\left(\frac{1}{n} (\log(p_n(z)) + 2\pi i t_n))$$
(3.19)

is analytic on B.

But $Im(\log(p_n(z) + 2\pi i t_n))$ is bounded on E' since $Im(\log_1(\tau))$ is bounded on G. Thus $g_2(z) = 1$ for all $z \in E'$ and since E' is not pluripolar, $g_2(z) = 1$ for all $z \in B$. But $g_1(z) = cg_2(z)$ for some constant c, |c| = 1. Hence $g_1(z)$ is constant on B. This contradiction establishes the result.

Remark 3.9. Note that Theorem 3.8 is also valid under the hypothesis (3.20) below rather than (3.15):

For all $z \in E$ and all balls *B* centered at $z, E \cap B$ is not contained in a proper real-analytic subvariety of *B*. (3.20)

This is because $E \cap B \subset \{z \in B \mid |g_1(z)| = 1\}$ and g_1 is non-constant, analytic on B.

Under the hypothesis of Theorem 3.8, we may conclude the following:

Remark 3.10. Given any complex number α and $z_0 \in \partial Z \cap E$ with $f(z_0) \neq \alpha$ there exists a sequence of points $z_n(\alpha)$ satisfying $\lim_{n \to \infty} z_n(\alpha) = z_0$ and $p_n(z_n(\alpha)) = \alpha$ (see Remark 3.7).

REFERENCES

- [Be] S. N. Bernstein, "Complete Works I," pp. 443-451, 1952. [In Russian]
- [B11] T. Bloom, Orthogonal polynomials in \mathbb{C}^N , Indiana Univ. Math. J. 46(2) (1997), 427–452.
- [Bl2] T. Bloom, Some applications of the Robin function to multivariable approximation theory, J. Approx. Theory 92 (1998), 1–21.

- [Bo] P. B. Borwein, The relationship between the zeros of best approximations and differentiability, *Proc. Amer. Math. Soc.* 92 (1984), 528–532.
- [BS] H.-P. Blatt and E. B. Saff, Behaviour of zeros of polynomials of near best approximation, J. Approx. Theory 46 (1986), 323–344.
- [K] M. Klimek, "Pluripotential Theory," Clarendon Press, 1991.
- [P] W. Pleśniak, On the distribution of zeros of the polynomials of best L²-approximation to holomorphic functions, *Zeszyty Nauk. Uniw. Jagielloh.* 22 (1981), 29–35.
- [Si1] J. Siciak, On some extremal functions and their applications, *Trans. Amer. Math. Soc.* 105(2), 1962, 322–357.
- [Si2] J. Siciak, Extremal plurisubharmonic functions in \mathbb{C}^N , Ann. Polon. Math. **39** (1981), 175–211.
- [Si3] J. Siciak, A remark on Tchebysheff polynomials in \mathbb{C}^N , Univ. Jagiellonian Acta Math. **25** (1997).
- [Sz] J. Szczepański, Zeros of polynomials approximating analytic functions, IM UJ Preprint 23 (1997).
- [Wa] J. L. Walsh, The analogue for maximally convergent polynomials of Jentzsch's theorem, Duke Math. J. 26 (1959), 605–616.
- [W] A. Wójcik, On zeros of polynomials of best approximation to holomorphic and C[∞] functions, *Monatsh. Math.* 105 (1988), 75–81.