On the Zeros of Polynomials of Best Approximation

Thomas Bloom ${ }^{1}$
Department of Mathematics, University of Toronto, Toronto, Canada M5S 3 G3
E-mail: bloom@math.utoronto.ca
and

Jerzy Szczepański ${ }^{2}$

Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Krakow, Poland E-mail: szczepan@im.uj.edu.pl

Received July 20, 1998; accepted in revised form March 25, 1999

Given a function f, uniform limit of analytic polynomials on a compact, regular set $E \subset \mathbb{C}^{N}$, we relate analytic extension properties of f to the location of the zeros of the best polynomial approximants to f in either the uniform norm on E or in appropriate L^{q} norms.

These results give multivariable versions of one-variable results due to Blatt-Saff, Pleśniak and Wójcik. © 1999 Academic Press
Key Words: best polynomial approximant; pluripotential theory.

0. INTRODUCTION

Let $E \subset \mathbb{C}^{N}$ be compact and regular (in the sense of pluripotential theory). Let $W(E)$ denote the closure in the uniform norm on E of $P\left(\mathbb{C}^{N}\right)$ (where $P\left(\mathbb{C}^{N}\right)$ denotes the analytic polynomials on $\left.\mathbb{C}^{N}\right)$. For $f \in W(E)$ we let $p_{n}(z)$ denote a best approximant to f from $P_{n}, n=1,2,3, \ldots$, where P_{n} denotes the analytic polynomials of total degree $\leqslant n$. Given a positive Borel measure μ on E we let f_{n} denote the best approximant from P_{n} to f in $L^{2}(d \mu)$

In this paper we will study the relation between analytic extension properties of f and zeros of the sequences $\left\{p_{n}(z)\right\}$ or $\left\{f_{n}(z)\right\}$.

Let $V_{E}(z)$ denote the pluricomplex Green function of E (see (1.1) for the definition).

[^0]For $R>1$, we let

$$
\begin{equation*}
E_{R}=\left\{z \in \mathbb{C}^{N} \mid V_{E}(z)<\log R\right\} . \tag{0.1}
\end{equation*}
$$

We will study analytic extension of f to open sets of the form E_{R}, i.e., does there exist F, analytic on E_{R} with $F /_{E}=f$?

In one variable, $V_{E}(z)$ is the Green function of $\mathbb{C} \backslash \hat{E}$ with a logarithmic pole at ∞ (and extended by zero on \hat{E}), where \hat{E} denotes the polynomial convex hull of E. In the one variable case, there are extensive results due to S. N. Bernstein, H.-P. Blatt-E. Saff, P. Borwein, W. Pleśniak and A. Wójcik (see references). Roughly speaking, f has an analytic extension to E_{R} if and only if almost all zeros of $\left\{p_{n}\right\}$ or $\left\{f_{n}\right\}$ lie in $\mathbb{C} \backslash E_{R}$. If f is not analytic on E (i.e., does not have an analytic extension to a neighborhood of E) then every point on $\partial \hat{E}$ is a limit point of the zeros of $\left\{p_{n}\right\}$. The precise statements must discount zeros in the interior of \hat{E}, and must be modified if f is identically zero on a component of the interior of \hat{E}.

Specific one variable results (reformulated) are as follows

Theorem 0.1 (Wójcik [W]). f has an analytic extension to E_{R} if the zeros of $\left\{p_{n}\right\}$ have no point of accumulation in E_{R}.

Theorem 0.2 (Blatt-Saff [BS]). Suppose f is not analytic on E and for some $z_{0} \in \partial \hat{E}, f\left(z_{0}\right) \neq 0$. Then there exists a sequence of points $\left\{z_{n}\right\}$ with $\lim _{n \rightarrow \infty} z_{n}=z_{0}$ and $p_{n}\left(z_{n}\right)=0$.

Theorem 0.3 (Pleśniak [P]). Let μ be a finite Borel measure on E which satisfies the Leja polynomial condition (see [P] for the definition). Then f has an analytic extension to E_{R} if the zeros of $\left\{f_{n}\right\}$ have no point of accumulation in E_{R}.

In this paper we will give multivariable versions of these results. Theorem 3.5 and Corollary 3.6 generalize theorems 0.1 and 0.3 . In Corollary 3.6 , the hypothesis that μ satisfy the Bernstein-Markov condition is a less stringent on μ than requiring it to satisfy the Leja polynomial condition (see [B11]). Theorem 3.8 is a multivariable version of Theorem 0.2. In Theorem 3.8 an additional hypothesis is required (see (3.15) or (3.20)) on the set E.

We also prove (Theorem 2.1) an L^{q} analogue of a result on Tchebyshev polynomials ([B12, Theorem 3.1]; [Si3]). This is used in the proof of Corollary 3.6 but is of independent interest.

1. PRELIMINARIES

Let $E \subset \mathbb{C}^{N}$ be a compact set. Let V_{E} denote its pluricomplex extremal function, i.e.

$$
\begin{equation*}
V_{E}(z)=\sup \left\{u(z): u \in \mathscr{L},\left.u\right|_{E} \leqslant 0\right\}, \tag{1.1}
\end{equation*}
$$

where \mathscr{L} denotes the Lelong class of plurisubharmonic functions satisfying

$$
\begin{equation*}
\sup _{z \in \mathbb{C}^{N}} u(z)-\log ^{+}|z|<\infty, \tag{1.2}
\end{equation*}
$$

where $|\cdot|$ denotes the Euclidean norm in \mathbb{C}^{N}.
We shall assume that E is regular, i.e., the function V_{E} is continuous. This implies that E is not pluripolar. Recall that a set $E \subset \mathbb{C}^{N}$ is said to be pluripolar if for every $a \in E$ there is a neighborhood V of a and a plurisubharmonic function u on V such that $E \cap V \subset\{z \in V \mid u=-\infty\}$. Pluripolar sets have Lebesgue ($2 n$-dimensional) measure zero [K, Cor. 2.9.10].

Let μ be a finite Borel measure on E such that the pair (E, μ) satisfies the Bernstein-Markov condition (BM), i.e., for any $\varepsilon>0$ and $q, 0<q<\infty$, there exists $A=A(\varepsilon, q)$ such that

$$
\begin{equation*}
\|p\|_{E} \leqslant A(1+\varepsilon)^{\operatorname{deg}(p)}\|p\|_{\mu, q} \tag{1.3}
\end{equation*}
$$

for all polynomials $p \in P\left(\mathbb{C}^{N}\right)$, where

$$
\begin{equation*}
\|p\|_{\mu, q}=\left(\int_{E}|p(z)|^{q} d \mu\right)^{1 / q} . \tag{1.4}
\end{equation*}
$$

It is known (see [Bll, Remark 3.2]) that if μ satisfies (BM) for one exponent $q, 0<q<\infty$, then it satisfies (BM) for all $q, 0<q<\infty$.

Let $L_{P}^{q}(E, \mu), 1 \leqslant q<\infty$, denote the continuous functions on E that are limits of polynomials in the norm $\left\|\|_{\mu, q}\right.$. Of course, $W(E) \subset L_{P}^{q}(E, \mu)$.

Let f be a continuous function on E. We denote by $p_{n} \in P_{n}$ and $f_{n} \in P_{n}$, respectively, polynomials of degree at most $n \in \mathbb{N}_{0}$ of best approximation in the uniform norm and the norm $\|\cdot\|_{\mu, q}$, respectively, i.e.

$$
\begin{align*}
\left\|f-p_{n}\right\|_{E} & =\inf \left\{\left\|f-q_{n}\right\|_{E}, q_{n} \in P_{n}\right\}, \tag{1.5}\\
\left\|f-f_{n}\right\|_{\mu, q} & =\inf \left\{\left\|f-q_{n}\right\|_{\mu, q}, q_{n} \in P_{n}\right\} . \tag{1.6}
\end{align*}
$$

These best approximants are not necessarily unique.

From the Bernstein-Walsh-Siciak theorem [Si1, Theorem 10.3] and the Bernstein-Walsh inequality (BW)

$$
\begin{equation*}
|p(z)| \leqslant\|p\|_{E}\left(\exp V_{E}(z)\right)^{\operatorname{deg} p}, \quad \text { for } \quad z \in \mathbb{C}^{N} \quad \text { and } \tag{1.7}
\end{equation*}
$$

for all polynomials $p \in P\left(\mathbb{C}^{N}\right)$ (see, eg., [Si2, 2.11] or $[\mathrm{K}, 5.1]$) we conclude the following

Remark 1.1. (cf. [Si2, Corollary 8.6]) Let $E \subset \mathbb{C}^{N}$ be a compact, regular set and let μ be a Borel measure such that (E, μ) satisfies (BM). Let f be a continuous function on E and $R>1$. If f admits an analytic extension onto E_{R}, denoted F, then the sequences of polynomials of best approximation $\left\{p_{n}\right\}$ and $\left\{f_{n}\right\}$ in the norms $\|\cdot\|_{E}$ and $\|\cdot\|_{\mu, q}$ are uniformly bounded on compact subsets of E_{R} and, for $1<r<R$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|F-p_{n}\right\| \frac{1 / n}{E_{r}} \leqslant \frac{r}{R} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|F-f_{n}\right\| \frac{1 / n}{E_{r}} \leqslant \frac{r}{R} . \tag{1.9}
\end{equation*}
$$

We shall denote by \hat{r}_{n} the homogeneous part of degree n of the polynomial $r_{n}(z)=\sum_{|\alpha| \leqslant n} a_{\alpha} z^{\alpha}$, i.e., $\hat{r}_{n}(z)=\sum_{|\alpha|=n} a_{\alpha} z^{\alpha}$. If $\operatorname{deg} r_{n}<n$ we put $\hat{r}_{n}(z) \equiv 0$.

For a homogeneous polynomial $h_{n}(z)=\sum_{|\alpha|=n} a_{\alpha} z^{\alpha}$ we define the Tchebyshev polynomials associated with h_{n} and the norms $\|\cdot\|_{E},\|\cdot\|_{\mu, q}$, respectively, by

$$
\begin{gather*}
\operatorname{Tch}_{E} h_{n}(z)=h_{n}(z)-r_{n-1}, \tag{1.10}\\
T c h_{\mu, q} h_{n}(z)=h_{n}(z)-s_{n-1}, \tag{1.11}
\end{gather*}
$$

where $r_{n-1}, s_{n-1} \in P_{n-1}$ are polynomials of best approximation to h_{n} in the norms $\|\cdot\|_{E}$ and $\|\cdot\|_{\mu, q}$, respectively, i.e.

$$
\begin{aligned}
\left\|h_{n}(z)-r_{n-1}\right\|_{E} & =\inf \left\{\left\|h_{n}(z)-p_{n-1}\right\|_{E}, p_{n-1} \in P_{n-1}\right\}, \\
\left\|h_{n}(z)-s_{n-1}\right\|_{\mu, q} & =\inf \left\{\left\|h_{n}(z)-p_{n-1}\right\|_{\mu, q}, p_{n-1} \in P_{n-1}\right\} .
\end{aligned}
$$

In general, $T c h_{E} h_{n}$ and $T c h_{\mu, q} h_{n}$ need not be unique (except for $q=2$, since $L_{P}^{2}(E, \mu)$ is a Hilbert space, thus s_{n-1} is the orthogonal projection of h_{n} on $\left.P_{n-1}\right)$, however the norms $\left\|T c h_{E} h_{n}\right\|_{E}$ and $\left\|T c h_{\mu, q} h_{n}\right\|_{\mu, q}$ are unambiguously defined.

Lemma 1.2 (see also [Sz, Lemma 5.2]). Let (E, μ) satisfy the Bernstein-Markov condition. Let $\left\{h_{n}\right\}_{n=1,2,3}, \cdots$ be a sequence of homogeneous polynomials of degree n. Let q satisfy $1 \leqslant q<\infty$. Then

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|T c h_{E} h_{n}\right\|_{E}^{1 / n} & =\limsup _{n \rightarrow \infty}\left\|T c h_{E} h_{n}\right\|_{\mu, q}^{1 / n}=\limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} h_{n}\right\|_{E}^{1 / n} \\
& =\limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} h_{n}\right\|_{\mu, q}^{1 / n} .
\end{aligned}
$$

Proof. From (BM) we have, for every $\varepsilon>0$

$$
\begin{equation*}
\left\|T c h_{\mu, q} h_{n}\right\|_{E} \leqslant A(1+\varepsilon)^{n}\left\|T c h_{\mu, q} h_{n}\right\|_{\mu, q} . \tag{1.12}
\end{equation*}
$$

Since $T c h_{\mu, q} h_{n}$ is a competitor for $T c h_{E} h_{n}$ we have

$$
\begin{equation*}
\left\|T c h_{E} h_{n}\right\|_{E} \leqslant\left\|T c h_{\mu, q} h_{n}\right\|_{E} . \tag{1.13}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left\|T c h_{\mu, q} h_{n}\right\|_{\mu, q} \leqslant\left\|T c h_{E} h_{n}\right\|_{\mu, q} . \tag{1.14}
\end{equation*}
$$

Since $\mu(E)<+\infty$ we have

$$
\begin{equation*}
\left\|T c h_{E} h_{n}\right\|_{\mu, q} \leqslant \mu(E)^{1 / q}\left\|T c h_{E} h_{n}\right\|_{E} \tag{1.15}
\end{equation*}
$$

Now, (1.12) and (1.13) imply

$$
\limsup _{n \rightarrow \infty}\left\|T c h_{E} h_{n}\right\|_{E}^{1 / n} \leqslant \limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} h_{n}\right\|_{E}^{1 / n} \leqslant \limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} h_{n}\right\|_{\mu, q}^{1 / n} .
$$

Also, (1.14) and (1.15) imply

$$
\limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} h_{n}\right\|_{\mu, q}^{1 / n} \leqslant \limsup _{n \rightarrow \infty}\left\|T c h_{E} h_{n}\right\|_{\mu, q}^{1 / n} \leqslant \limsup _{n \rightarrow \infty}\left\|T c h_{E} h_{n}\right\|_{E}^{1 / n} .
$$

The result follows.
For $u \in \mathscr{L}$ we define the Robin function associated with u by

$$
\begin{equation*}
\rho_{u}([z])=\lim _{\substack{|\lambda| \rightarrow \infty \\ \lambda \in \mathbb{C}}} u(\lambda z)-\operatorname{sog}^{+}|\lambda z|, \quad \text { for } \quad z \in \mathbb{C}^{N} \backslash\{0\}, \tag{1.16}
\end{equation*}
$$

where $[\cdot]: \mathbb{C}^{N} \backslash\{0\} \ni z \rightarrow[z] \in \mathbb{P}^{N-1}$ denotes the natural map and \mathbb{P}^{N-1} denotes complex projective $(N-1)$-space.

It is seen that if $p_{n} \in P_{n}$ then $u_{n}(z):=1 / n \log \left|p_{n}(z)\right| \in \mathscr{L}$ and

$$
\begin{equation*}
\rho_{u_{n}}([z])=\frac{1}{n} \log \left|\hat{p}_{n}(z)\right|-\log |z|, \quad \text { for } \quad z \neq 0 \tag{1.17}
\end{equation*}
$$

If $\operatorname{deg} p_{n}<n$ then $\hat{p}_{n}(z) \equiv 0$ and we put $\rho_{u_{n}} \equiv-\infty$.

The Robin function of a compact, regular set E, denoted $\rho_{E}([z])$ is defined as the Robin function of $V_{E}(z)$.

2. AN APPLICATION OF THE ROBIN FUNCTION TO POLYNOMIAL APPROXIMATION-THE CASE OF L^{q} NORMS

We prove a counterpart of [B 12 , Theorem 3.1] in the case of the polynomial approximation in L^{q}-norms.

Theorem 2.1. Let $E \subset \mathbb{C}^{N}$ be a compact, regular set and let μ be a Borel measure such that the pair (E, μ) satisfies $(B M)$. Fix $q, 1 \leqslant q<\infty$. Let $f \in L_{P}^{q}(E, \mu)$ and $R>1$. The following conditions are equivalent

$$
\begin{gather*}
f \text { extends analytically to } E_{R} \tag{2.1}\\
\limsup _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\mu, q}^{1 / n} \leqslant \frac{1}{R} \tag{2.2}\\
\limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} \hat{f}_{n}\right\|_{E}^{1 / n} \leqslant \frac{1}{R} \tag{2.3}\\
\limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} \hat{f}_{n}\right\|_{\mu, q}^{1 / n} \leqslant \frac{1}{R}
\end{gather*}
$$

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} \hat{f}_{n}\right\|_{E}^{1 / n} \leqslant \frac{1}{R} \\
& \limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} \hat{f}_{n}\right\|_{\mu, q}^{1 / n} \leqslant \frac{1}{R}
\end{aligned}
$$

$\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|\hat{f}_{n}(z)\right|-\log |z| \leqslant \rho_{E}([z])-\log R, \quad$ for all $\quad z \neq 0$,
where $\left\{f_{n}\right\}$ is a sequence of polynomials of best approximation in the norm $\|\cdot\|_{\mu, q}$.

The proof of the theorem is analogous to the proof of [B12, Theorem 3.1]

$$
\begin{gathered}
(2.1) \Rightarrow(2.2) \Rightarrow(2.4) \Rightarrow(2.2) \Rightarrow(2.1) \\
(2.3) \Leftrightarrow(2.4) \\
(2.3) \Rightarrow(2.5) \Rightarrow(2.4) .
\end{gathered}
$$

Proof. Assume (2.1). By the Bernstein-Walsh-Siciak theorem we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|f-p_{n}\right\|_{E}^{1 / n} \leqslant \frac{1}{R}, \tag{2.6}
\end{equation*}
$$

where $\left\{p_{n}\right\}$ is a sequence of polynomials of best uniform approximation to f on E. Since

$$
\begin{equation*}
\left\|f-f_{n}\right\|_{\mu, q} \leqslant\left\|f-p_{n}\right\|_{\mu, q} \leqslant(\mu(E))^{1 / q}\left\|f-p_{n}\right\|_{E}, \tag{2.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\mu, q}^{1 / n} \leqslant \frac{1}{R} \tag{2.8}
\end{equation*}
$$

i.e., (2.2) holds.

Next, by the definition of the Tchebyshev polynomial $T c h_{\mu, q} \hat{f}_{n}$ and by (1.6), we get

$$
\begin{align*}
\left\|T c h_{\mu, q} \hat{f}_{n}\right\|_{\mu, q} & \leqslant\left\|f_{n}-f_{n-1}\right\|_{\mu, q} \\
& \leqslant\left\|f_{n}-f\right\|_{\mu, q}+\left\|f-f_{n-1}\right\|_{\mu, q} \\
& \leqslant 2\left\|f-f_{n-1}\right\|_{\mu, q} \tag{2.9}
\end{align*}
$$

Thus, by (2.2),

$$
\limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} \hat{f}_{n}\right\|_{\mu, q}^{1 / n} \leqslant \limsup _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\mu, q}^{1 / n} \leqslant \frac{1}{R},
$$

and (2.4) follows.
Since the pair (E, μ) satisfies (BM), by Lemma 1.2, the conditions (2.3) and (2.4) are equivalent.

Assume (2.4). By the definition of the Tchebyshev polynomial $T c h_{\mu, q} \hat{f}_{n+1}$, we have

$$
\begin{align*}
& \left\|f-f_{n}\right\|_{\mu, q} \leqslant\left\|f-\left(f_{n+1}-T c h_{\mu, q} \hat{f}_{n+1}\right)\right\|_{\mu, q} \\
& \left.\leqslant\left\|f-f_{n+1}\right\|_{\mu, q}+\| T c h_{\mu, q} \hat{f}_{n+1}\right) \|_{\mu, q} . \tag{2.10}
\end{align*}
$$

Since $\left\|f-f_{n}\right\|_{\mu, q} \geqslant\left\|f-f_{n+1}\right\|_{\mu, q}$ and $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\mu, q}=0$, we have, by (2.4),

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\mu, q}^{1 / n} \leqslant \frac{1}{R} \tag{2.11}
\end{equation*}
$$

i.e., (2.2) holds.

Next, suppose that (2.2) holds. Fix $r, 1<r<R$, and then fix $\varepsilon>0$ and ρ such that $(1+\varepsilon) r<\rho<R$. By (2.2), there exists $n_{0}=n_{0}(\rho)$ such that

$$
\begin{equation*}
\left\|f-f_{n}\right\|_{\mu, q} \leqslant \frac{1}{\rho^{n}} \quad \text { for } \quad n \geqslant n_{0} . \tag{2.12}
\end{equation*}
$$

By (BW),

$$
\begin{equation*}
\left\|f_{n+1}-f_{n}\right\|_{\bar{E}_{r}} \leqslant r^{n+1}\left\|f_{n+1}-f_{n}\right\|_{E} . \tag{2.13}
\end{equation*}
$$

Next, by (BM), there exists $A_{\varepsilon}>0$ such that

$$
\begin{equation*}
\left\|f_{n+1}-f_{n}\right\|_{E} \leqslant A_{\varepsilon}(1+\varepsilon)^{n+1}\left\|f_{n+1}-f_{n}\right\|_{\mu, q}, \text { for all } n \tag{2.14}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left\|f_{n+1}-f_{n}\right\|_{\mu, q} \leqslant\left\|f_{n+1}-f\right\|_{\mu, q}+\left\|f_{n}-f\right\|_{\mu, q} \leqslant 2\left\|f-f_{n}\right\|_{\mu, q}, \tag{2.15}
\end{equation*}
$$

we get, for $n \geqslant n_{0},\left\|f_{n+1}-f_{n}\right\|_{\bar{E}_{r}} \leqslant 2 A_{\varepsilon} \rho((1+\varepsilon) r / \rho)^{n+1}$. Thus, for all $M, n \geqslant n_{0}$, we have

$$
\begin{equation*}
\sum_{k=n}^{M}\left\|f_{k+1}-f_{k}\right\|_{\bar{E}_{r}} \leqslant C\left(\frac{(1+\varepsilon) r}{\rho}\right)^{n+1} \tag{2.16}
\end{equation*}
$$

where $C=2 A_{\varepsilon} \rho^{2}(\rho-(1+\varepsilon) r)^{-1}$. Since $(1+\varepsilon) r<\rho$, the series

$$
f_{0}+\sum_{k=0}^{\infty} f_{k+1}-f_{k}
$$

converges uniformly on $\overline{E_{r}}$. Since $r<R$ has been chosen arbitrary, we conclude that f extends analytically to E_{R}. i.e., (2.1) follows.

Suppose that (2.3) holds. Fix r such that $1<r<R$. Then for $n \geqslant n_{1}(r)$ we have $\left\|T c h_{\mu, q} \hat{f}_{n}\right\|_{E}^{1 / n} \leqslant 1 / r$ or

$$
\begin{equation*}
\log r+\frac{1}{n} \log \left|T c h_{\mu, q} \hat{f}_{n}(z)\right| \leqslant 0, \quad \text { for all } \quad z \in E . \tag{2.17}
\end{equation*}
$$

Hence, by the definition of the pluricomplex extremal function V_{E} (see (1.1)), we have

$$
\begin{equation*}
\log r+\frac{1}{n} \log \left|T c h_{\mu, q} \hat{f}_{n}(z)\right| \leqslant V_{E}(z), \quad \text { for all } \quad z \in \mathbb{C}^{N} \tag{2.19}
\end{equation*}
$$

Taking the Robin function of the both sides of (2.19) gives

$$
\begin{equation*}
\log r+\frac{1}{n} \log \left|\hat{f}_{n}(z)\right|-\log |z| \leqslant \rho_{E}([z]), \quad \text { for all } \quad z \in \mathbb{C}^{N} \backslash\{0\} . \tag{2.20}
\end{equation*}
$$

Since it holds for all $n \geqslant n_{1}(r)$ and all $r<R$ we get (2.5).
It remains to prove $(2.5) \Rightarrow(2.4)$. This follows from the following

Lemma 2.2 (cf. [B12, Theorem 3.2]). Let $E \subset \mathbb{C}^{N}$ be a compact, regular set and let μ be a Borel measure such that (E, μ) satisfies (BM). Let q satisfy $1 \leqslant q<\infty$. Let h_{n} be a sequence of homogeneous polynomials satisfying $\operatorname{deg} h_{n}=n$ or $h_{n}(z) \equiv 0$, for all $n \in \mathbb{N}_{0}$. Let $R>1$. If

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|h_{n}(z)\right|-\log |z| \leqslant \rho_{E}([z])-\log R, \quad \text { for all } \quad z \in \mathbb{C}^{N} \backslash\{0\} \tag{2.21}
\end{equation*}
$$

then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T c h_{\mu, q} h_{n}\right\|_{\mu, q}^{1 / n} \leqslant \frac{1}{R} . \tag{2.22}
\end{equation*}
$$

Recall (1.13) that if $h_{n}(z) \equiv 0$ we put $1 / n \log \left|h_{n}(z)\right|-\log |z| \equiv-\infty$.
Proof of of Lemma 2.2. From [B12, Theorem 3.1] (2.21) we have that

$$
\limsup _{n \rightarrow \infty}\left\|T c h_{E} h_{n}\right\|_{E}^{1 / n} \leqslant \frac{1}{R}
$$

and the result now follows from Lemma 1.2.
Putting $h_{n}:=\hat{f}_{n}$ in the above lemma gives the implication $(2.5) \Rightarrow(2.4)$. This completes the proof of Theorem 2.1.

3. ZEROS OF POLYNOMIALS OF BEST APPROXIMATION

Let E be a compact, regular subset of $\mathbb{C}^{N}, f \in W(E)$ and $\left\{p_{n}\right\}$ a sequence of best approximants to f in the uniform norm on E. We will relate the location of the zeros of $\left\{p_{n}\right\}$ to the analytic extension properties of f.

First we consider

$$
\begin{equation*}
v(z):=\left(\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}(z)\right|\right) * \tag{3.1}
\end{equation*}
$$

where ()* denotes upper semi-continuous regularization. (Recall that $\left.(g(z))^{*}=\varlimsup_{\lim _{\xi \rightarrow z}} g(\xi).\right)$

The sequence $\left\{p_{n}\right\}$ is uniformly bounded on E. Since E is non pluripolar, $\left\{p_{n}(z)\right\}$ is locally bounded from above on \mathbb{C}^{N} by (BW), and so $v \in \mathscr{L}$ [K, prop. 5.2.1].

Let

$$
\begin{equation*}
Z:=\left\{z \in \mathbb{C}^{N} \mid v(z) \leqslant 0\right\} \tag{3.2}
\end{equation*}
$$

and we let $\operatorname{int}(Z)$ denote the interior of the set Z. Let $R>1$. We have

Lemma 3.1. The function f extends to a holomorphic function on E_{R} if and only if $\operatorname{int}(Z) \supset E_{R}$.

Proof. Suppose that $E_{R} \subset \operatorname{int}(Z)$. Let $1<r<R$. Then $\overline{E_{r}} \subset \operatorname{int}(Z)$. Since

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}(z)\right| \leqslant 0 \quad \text { on } \quad \overline{E_{r}}
$$

we have by Hartogs lemma, given $\varepsilon>0$, there exists $n_{0}(\varepsilon)$

$$
\begin{equation*}
\frac{1}{n} \log \left|p_{n}(z)\right| \leqslant \varepsilon, \quad \text { for } \quad n \geqslant n_{0}(\varepsilon) \quad \text { and } \quad z \in \overline{E_{r}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{n} \log \left|p_{n}(z)\right| \leqslant \varepsilon+V_{\bar{E}_{r}}(z) \quad \text { for } \quad z \in \mathbb{C}^{N} \quad \text { and } \quad n \geqslant n_{0} \tag{3.4}
\end{equation*}
$$

Taking the Robin function of both sides of the above inequality gives

$$
\begin{equation*}
\frac{1}{n} \log \left|\hat{p}_{n}(z)\right|-\log |z| \leqslant \varepsilon+\rho_{\overline{E_{r}}}([z]) \quad \text { for } \quad n \geqslant n_{0} \tag{3.5}
\end{equation*}
$$

Recall that since E is regular,

$$
\begin{equation*}
V_{\bar{E}_{r}}(z)=\max \left\{V_{E}(z)-\log r, 0\right\} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{\bar{E}_{r}}([z])=\rho_{E}([z])-\log r, \quad \text { for all } \quad z \neq 0 . \tag{3.7}
\end{equation*}
$$

Using (3.5) and (3.7) gives

$$
\begin{equation*}
\frac{1}{n} \log \left|\hat{p}_{n}(z)\right|-\log |z| \leqslant \varepsilon+\rho_{E}([z])-\log r \quad \text { for } \quad n \geqslant n_{0} . \tag{3.8}
\end{equation*}
$$

Hence, for all $\varepsilon>0$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|\hat{p}_{n}(z)\right|-\log |z| \leqslant \varepsilon+\rho_{E}([z])-\log r \tag{3.9}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|\hat{p}_{n}(z)\right|-\log |z| \leqslant \rho_{E}([z])-\log r \tag{3.10}
\end{equation*}
$$

Then, by [$\mathrm{Bl2}$, Theorem 3.1] f extends analytically to E_{r}. Since (3.10) is valid for any $r<R$, the function f extends analytically to E_{R}.

Conversely, if f extends analytically to E_{R}, by Remark 1.1 , the sequence $\left\{p_{n}\right\}$ is uniformly bounded on $\overline{E_{r}}$, for all $r<R$. Thus, $v \leqslant 0$ on $\overline{E_{r}}$ and since $\bigcup_{r<R} \overline{E_{r}} \subset E_{R}$, we have $v \leqslant 0$ on E_{R} and so $E_{R} \subset \operatorname{int}(Z)$, since E_{R} is open (cf. 1.1).

Let $E \subset \mathbb{C}^{N}$ be a compact, regular set and let μ be a finite Borel measure such that (E, μ) satisfies (BM). Let q satisfy $1 \leqslant q<\infty$. Let $\left\{f_{n}\right\}$ be a sequence of polynomials of best approximation in the norm $\|\cdot\|_{\mu, q}$ to a function $f \in L_{P}^{q}(E, \mu)$. We put

$$
\begin{equation*}
v_{\mu}(z):=\left(\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|f_{n}(z)\right|\right)^{*} \tag{3.11}
\end{equation*}
$$

The sequence $\left\{f_{n}(z)\right\}$ is uniformly bounded in $L^{q}(E, \mu)$. Using (BM) we conclude that $\lim \sup _{n \rightarrow \infty}\left\|f_{n}\right\|_{E}^{1 / n} \leqslant 1$ so $v_{\mu} \in \mathscr{L}$ (by [Bl1, Lemma 3.2] and [K, prop. 5.2.1]).

Let $Z_{\mu}=\left\{z \in \mathbb{C}^{N}: v_{\mu}(z) \leqslant 0\right\}$. Let $\operatorname{int}\left(Z_{\mu}\right)$ denote the interior of the set Z_{μ}.

Lemma 3.2. Let $f \in L_{P}^{q}(E, \mu)$. Let $R>1$. The function f extends analytically to E_{R} if and only if $\operatorname{int}\left(Z_{\mu}\right) \supset E_{R}$.
The proof of the above lemma is analogous to the proof of Lemma 3.1. To prove that $E_{R} \subset \operatorname{int}\left(Z_{\mu}\right)$ implies that f extends analytically to E_{R}, one should repeat (3.3)-(3.10) putting $\left\{f_{n}\right\}$ instead of $\left\{p_{n}\right\}$ and use Theorem 2.1 in (3.10) instead of [B12, Theorem 3.1]. The converse implication follows from Remark 1.1.

Lemma 3.3. (i) $Z \supset E$ and $Z_{\mu} \supset E$.
(ii) Let $f \in W(E)$ not be analytic on E. Then $\partial Z \cap E \neq \varnothing$. Similarly for $f \in L_{P}^{q}(E, \mu)$ and f not analytic on E, then $\partial Z_{\mu} \cap E \neq \varnothing$.
(iii) Let $f \in W(E)$ have an analytic extension to $E_{R}($ for some $R>1)$ but not to E_{s} for any $s>R$. Then $\partial E_{R} \cap \partial(\operatorname{int}(Z)) \neq \varnothing$ and $\partial E_{R} \cap$ $\partial\left(\operatorname{int}\left(Z_{\mu}\right)\right) \neq \varnothing$.

Proof. (i) To show that $Z \supset E$ we must show that $v \leqslant 0$ on E.
The sequence $\left\{p_{n}(z)\right\}$ is uniformly bounded on E so $\lim \sup _{n \rightarrow \infty}$ $1 / n \log \left|p_{n}(z)\right| \leqslant 0$ on E. Since negligible sets are pluripolar [K, Cor 4.6.2] we have $v \leqslant 0$ on $E \backslash N$, where N is pluripolar, so $v \leqslant V_{E \backslash N}^{*}$. But by [K, Cor 5.2.5] $V_{E \backslash N}^{*}=V_{E}$ and $V_{E} \equiv 0$ on E.

The proof that $Z_{\mu} \supset E$ is similar.
(ii) That $\partial Z \cap E \neq \varnothing$ follows from (i) and Lemma 3.1. That $\partial Z_{\mu} \cap E \neq \varnothing$ follows from (i) and Lemma 3.2.
(iii) This follows from Lemmas 3.1 and 3.2.

Example 3.4. Let E be a compact, regular subset of \mathbb{C} and let $f \in W(E)$ not be analytic on E. Then it follows from ([BS, Theorem 2.1 and Lemma $4.2])$ that v (defined by (3.1)) is the Green function of $\mathbb{C} \backslash \hat{E}$ and that $Z=\hat{E}$.

In the multivariable case we will give an example of $f \in W(E)$, not analytic on E but where $Z \neq E$ (E will be polynomially convex so that $E=\hat{E}$).

Let E be the unit ball in $\mathbb{C}^{2} . E=\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \leqslant 1\right\}$ and let $f=f\left(z_{1}\right)$ be a function continuous on $\Delta_{1}=\left\{z_{1} \in \mathbb{C}:\left|z_{1}\right| \leqslant 1\right\}$ analytic on $\operatorname{int}\left(\Delta_{1}\right)$ and not analytic on Δ_{1}. Let $p_{n}\left(z_{1}\right)$ denote the best polynomial approximant of degree $\leqslant n$ to f on Δ_{1}. Then $p_{n}\left(z_{1}\right)$ is a best approximant of total degree $\leqslant n$ to f considered as a function on E. Using the above quoted result of Blatt-Saff it follows that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}\left(z_{1}\right)\right|=\log \left|z_{1}\right| \quad \text { for } \quad\left|z_{1}\right| \geqslant 1
$$

so it follows that $Z=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right| \leqslant 1\right\}$. Note that $\partial Z \cap E$ does not contain either the topological or Silov boundary of E, in contrast, to the one-variable case.

Theorem 3.5. Let f be holomorphic on E_{R} and let $\widetilde{E_{R}}$ be the union of those components of E_{R}, where f is not identically equal to zero. Let $\left\{p_{n}\right\}$ be $\widetilde{\sim}^{a}$ sequence of best uniform approximants to f on E. Let $z_{0} \in$ $\partial \widetilde{E_{R}} \cap \partial(\operatorname{int}(Z))$. Then there exists a sequence of points $\left\{z_{n}\right\}$ with $\lim _{n \rightarrow \infty} z_{n}=z_{0}$ and $p_{n}\left(z_{n}\right)=0$.

Proof. The proof is by contradiction. Suppose that z_{0} is not such a limit point. Then there is a ball B centred at z_{0} such that $p_{n} \neq 0$ on B for $n \geqslant n_{1}$. Chose an analytic branch of $p_{n}^{1 / n}$ on B. For some constant $M_{1}>0$ we have $v(z) \leqslant M_{1}$, for all $z \in \bar{B}$. Hence
$\left|p_{n}^{1 / n}(z)\right|=\exp \left(\frac{1}{n} \log \left|p_{n}(z)\right|\right) \leqslant \exp 2 M_{1} \quad$ for all $n \geqslant n_{2}\left(M_{1}\right)$
and the sequence $\left\{p_{n}^{1 / n}\right\}$ is a uniformly bounded sequence of analytic functions on B. Now $B \nsubseteq \operatorname{int}(Z)$, so there is a point $z_{1} \in B$ where $\lim \sup _{n \rightarrow \infty} 1 / n$ $\log \left|p_{n}\left(z_{1}\right)\right|>0$ since $\lim \sup _{n \rightarrow \infty} 1 / n \log \left|p_{n}(z)\right|=v(z)$, except possibly on a pluripolar set.

Chose a subsequence $J \subset \mathbb{N}_{0}$ such that

$$
\begin{equation*}
\lim _{n \in J} \frac{1}{n} \log \left|p_{n}\left(z_{1}\right)\right|>0 \tag{3.13}
\end{equation*}
$$

Let J_{1} be a subsequence of J such that the uniformly bounded sequence of analytic functions $\left\{p_{n}^{1 / n}(z)\right\}_{n \in J_{1}}$ converges uniformly on compact subsets of B to an analytic function, denoted $g(z)$. Then

$$
\begin{equation*}
\log |g(z)|=\lim _{n \in J_{1}} \frac{1}{n} \log \left|p_{n}(z)\right|, \quad \text { for } \quad z \in B, \tag{3.14}
\end{equation*}
$$

so $\left|g\left(z_{1}\right)\right|>1$ and $|g(z)| \leqslant 1$ for $z \in \operatorname{int}(Z) \cap B$.
Thus g is not constant on B and so by the maximum modulus principle $|g(z)|<1$ on $\operatorname{int}(Z) \cap B$. This implies that $\lim _{n \in J_{1}}\left|p_{n}(z)\right|^{1 / n}<1$, for $z \in \operatorname{int}(Z) \cap B$, and so $\lim _{n \in J_{1}}\left|p_{n}(z)\right|=0$. But on $B \cap E_{R}$, the sequence $\left\{p_{n}\right\}$ converges to f uniformly on compact subsets. Hence $f \equiv 0$ on $B \cap \widetilde{E_{R}}$, which contradicts the assumption that f is not identically zero on any component of $\widetilde{E_{R}}$.

The above proof is based on the proof of Theorem 2.2 in [BS]. See also [Wa, theorem 2].

Let $E \subset \mathbb{C}^{N}$ be a compact, regular set and let μ be a finite Borel measure such that (E, μ) satisfies (BM). Let q satisfy $1 \leqslant q<\infty$.

Proceeding in the same manner as in the proof of Theorem 3.5, one easily proves

Corollary 3.6. Let f be holomorphic on E_{R} and let $\widetilde{E_{R}}$ be the union of connected components of E_{R} where f is not identically equal to zero. Let $\left\{f_{n}\right\}$ be a sequence of best approximants to f on E in the norm $\|\cdot\|_{\mu, q}$. Let $z_{0} \in \partial \widetilde{E_{R}} \cap \partial\left(\operatorname{int}\left(Z_{\mu}\right)\right)$. Then there exists a sequence of points $\left\{z_{n}\right\}$ such that $\lim _{n \rightarrow \infty} z_{n}=z_{0}$ and $f_{n}\left(z_{n}\right)=0$.

Remark 3.7. Let f be holomorphic on E_{R} but not on $E_{s}($ for any $s>R$). Let $\left\{p_{n}\right\}$ be a sequence of best uniform approximants to f on E. Let $z_{0} \in \partial E_{R} \cap \partial(\operatorname{int}(Z))$ and let α be a complex number such that there is a connected component of E_{R} with z_{0} in its closure and f is not identically equal to α on that component. Then there exists a sequence of points $z_{n}(\alpha)$ such that $\lim _{n \rightarrow \infty} z_{n}(\alpha)=z_{0}$ and $p_{n}\left(z_{n}(\alpha)\right)=0$.

This is because $p_{n}-\alpha$ is a best approximant from P_{n} to $f-\alpha$. This, in turn, shows that the sequence of best approximants $\left\{p_{n}\right\}$ have "the behaviour of an essential singularity" at every point of $\partial E_{R} \cap \partial(\operatorname{int}(Z))$. Precisely, for every point $z_{0} \in \partial E_{R} \cap \partial(\operatorname{int}(Z))$ and every neighborhood N of z_{0} the values $\bigcup_{n=1}^{\infty} p_{n}(V)$ are equal to \mathbb{C} or omit at most one complex
number. In particular the sequence $\left\{p_{n}\right\}$ does not converge uniformly on any neighborhood of z_{0} although the function f may have an analytic extension to a neighborhood of z_{0}.

Similarly, the sequence of best approximants $\left\{f_{n}\right\}$ has "the behavior of an essential singularity" at every point of $\partial E_{R} \cap \partial\left(\operatorname{int}\left(Z_{\mu}\right)\right)$.

We now turn to the case that f is not analytic on E. We will give a multivariable version of ([BS, Theorem 2.2]). That result is valid for E a regular, compact, polynomially convex subset of \mathbb{C} whereas our generalization requires an additional hypothesis on E. (We conjecture Theorem 3.8 to be valid without this additional hypothesis).

We introduce:
For all $z \in E$ and any ball B centered at z, there is a connected component E^{\prime} of $\bar{B} \cap E$ which is not pluripolar.

Theorem 3.8. Let $f \in W(E)$ and suppose f is not analytic on E. Assume that E satisfies (3.15). Let $z_{0} \in \partial Z \cap E$ be such that $f\left(z_{0}\right) \neq 0$. Then there exists a sequence of points $\left\{z_{n}\right\}$, such that $\lim _{n \rightarrow \infty} z_{n}=z_{0}$ and $p_{n}\left(z_{n}\right)=0$, for $n=1,2,3, \ldots$.

Proof. Note that for $f \in W(E)$ if f is not analytic on E then, by Lemma 3.3, $\partial Z \cap E \neq \varnothing$. The proof is by contradiction. Suppose that z_{0} is not such a limit point. Proceeding as in the proof of Theorem 3.5 we may assume there is a ball B, with center z_{0}, sufficiently small radius and an integer n_{1} such that

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)\right|<\left|\frac{f\left(z_{0}\right)}{4}\right| \quad \text { for } \quad z \in E \cap \bar{B} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{n}(z)-f\left(z_{0}\right)\right|<\left|\frac{f\left(z_{0}\right)}{2}\right| \quad \text { for } \quad z \in E \cap \bar{B} \tag{3.17}
\end{equation*}
$$

for $n \geqslant n_{1}$.
Furthermore we may assume $p_{n}(z)$ has no zero on B for $n \geqslant n_{1}$. For $n \geqslant n_{1}$ we choose an analytic branch of $\log p_{n}(z)$ on B.

As in the proof of Theorem 3.5, we may assume there is a subsequence $J_{1} \subset \mathbb{N}$ such that

$$
\begin{equation*}
g_{1}(z):=\lim _{n \in J_{1}} \exp \left(\frac{1}{n} \log p_{n}(z)\right) \tag{3.18}
\end{equation*}
$$

is analytic and non constant on B.

Let $\log _{1}$ be an analytic branch of the logarithm function on the set

$$
G=\left\{\tau \in \mathbb{C}| | \tau-f\left(z_{0}\right)\left|<\left|\frac{f\left(z_{0}\right)}{2}\right|\right\} .\right.
$$

Then $\log _{1}\left(p_{n}(z)\right)$ is defined for $z \in E \cap \bar{B}$ and $n \geqslant n_{1}$. Now

$$
\frac{1}{2 \pi i}\left[\log _{1}\left(p_{n}(z)\right)-\log \left(p_{n}(z)\right)\right]
$$

is continuous on $E \cap \bar{B}$ and integer-valued. Hence it must be constant on E^{\prime} (by hypothesis (3.15) this is a connected component of $E \cap \bar{B}$). Let $t_{n} \in \mathbb{Z}$ denote its value.

We then consider the functions $\log \left(p_{n}(z)+2 \pi i t_{n}\right)$ and we may choose a subsequence $J_{2} \subset J_{1}$ so that

$$
\begin{equation*}
g_{2}(z):=\lim _{n \in J_{2}} \exp \left(\frac{1}{n}\left(\log \left(p_{n}(z)\right)+2 \pi i t_{n}\right)\right) \tag{3.19}
\end{equation*}
$$

is analytic on B.
But $\operatorname{Im}\left(\log \left(p_{n}(z)+2 \pi i t_{n}\right)\right)$ is bounded on E^{\prime} since $\operatorname{Im}\left(\log _{1}(\tau)\right)$ is bounded on G. Thus $g_{2}(z)=1$ for all $z \in E^{\prime}$ and since E^{\prime} is not pluripolar, $g_{2}(z)=1$ for all $z \in B$. But $g_{1}(z)=c g_{2}(z)$ for some constant $c,|c|=1$. Hence $g_{1}(z)$ is constant on B. This contradiction establishes the result.

Remark 3.9. Note that Theorem 3.8 is also valid under the hypothesis (3.20) below rather than (3.15):

> For all $z \in E$ and all balls B centered at $z, E \cap B$ is not contained in a proper real-analytic subvariety of B.

This is because $E \cap B \subset\left\{z \in B\left|\left|g_{1}(z)\right|=1\right\}\right.$ and g_{1} is non-constant, analytic on B.

Under the hypothesis of Theorem 3.8, we may conclude the following:
Remark 3.10. Given any complex number α and $z_{0} \in \partial Z \cap E$ with $f\left(z_{0}\right) \neq \alpha$ there exists a sequence of points $z_{n}(\alpha)$ satisfying $\lim _{n \rightarrow \infty} z_{n}(\alpha)=z_{0}$ and $p_{n}\left(z_{n}(\alpha)\right)=\alpha$ (see Remark 3.7).

REFERENCES

[Be] S. N. Bernstein, "Complete Works I," pp. 443-451, 1952. [In Russian]
[B11] T. Bloom, Orthogonal polynomials in \mathbb{C}^{N}, Indiana Univ. Math. J. 46(2) (1997), 427-452.
[B12] T. Bloom, Some applications of the Robin function to multivariable approximation theory, J. Approx. Theory 92 (1998), 1-21.
[Bo] P. B. Borwein, The relationship between the zeros of best approximations and differentiability, Proc. Amer. Math. Soc. 92 (1984), 528-532.
[BS] H.-P. Blatt and E. B. Saff, Behaviour of zeros of polynomials of near best approximation, J. Approx. Theory 46 (1986), 323-344.
[K] M. Klimek, "Pluripotential Theory," Clarendon Press, 1991.
[P] W. Pleśniak, On the distribution of zeros of the polynomials of best L^{2}-approximation to holomorphic functions, Zeszyty Nauk. Uniw. Jagielloń. 22 (1981), 29-35.
[Si1] J. Siciak, On some extremal functions and their applications, Trans. Amer. Math. Soc. 105(2), 1962, 322-357.
[Si2] J. Siciak, Extremal plurisubharmonic functions in \mathbb{C}^{N}, Ann. Polon. Math. 39 (1981), 175-211.
[Si3] J. Siciak, A remark on Tchebysheff polynomials in \mathbb{C}^{N}, Univ. Jagiellonian Acta Math. 25 (1997).
[Sz] J. Szczepański, Zeros of polynomials approximating analytic functions, IM UJ Preprint 23 (1997).
[Wa] J. L. Walsh, The analogue for maximally convergent polynomials of Jentzsch's theorem, Duke Math. J. 26 (1959), 605-616.
[W] A. Wójcik, On zeros of polynomials of best approximation to holomorphic and C^{∞} functions, Monatsh. Math. 105 (1988), 75-81.

[^0]: ${ }^{1}$ Research supported by a NSERC of Canada Grant.
 ${ }^{2}$ Partially supported by KBN Grant No. 2 P03A 04514 (Committee for Scientific Research).

