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Given a function f, uniform limit of analytic polynomials on a compact, regular
set E/CN, we relate analytic extension properties of f to the location of the zeros
of the best polynomial approximants to f in either the uniform norm on E or in
appropriate Lq norms.

These results give multivariable versions of one-variable results due to Blatt�Saff,
Ples� niak and Wo� jcik. � 1999 Academic Press
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0. INTRODUCTION

Let E/CN be compact and regular (in the sense of pluripotential
theory). Let W(E) denote the closure in the uniform norm on E of P(CN)
(where P(CN) denotes the analytic polynomials on CN). For f # W(E) we
let pn (z) denote a best approximant to f from Pn , n=1, 2, 3, ..., where Pn

denotes the analytic polynomials of total degree �n. Given a positive
Borel measure + on E we let fn denote the best approximant from Pn to f
in L2(d+)

In this paper we will study the relation between analytic extension
properties of f and zeros of the sequences [ pn (z)] or [ fn (z)].

Let VE (z) denote the pluricomplex Green function of E (see (1.1) for the
definition).
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For R>1, we let

ER=[z # CN | VE (z)<log R]. (0.1)

We will study analytic extension of f to open sets of the form ER , i.e., does
there exist F, analytic on ER with F�E= f ?

In one variable, VE (z) is the Green function of C"E� with a logarithmic
pole at � (and extended by zero on E� ), where E� denotes the polynomial
convex hull of E. In the one variable case, there are extensive results
due to S. N. Bernstein, H.-P. Blatt�E. Saff, P. Borwein, W. Ples� niak and
A. Wo� jcik (see references). Roughly speaking, f has an analytic extension to
ER if and only if almost all zeros of [ pn] or [ fn] lie in C"ER . If f is not
analytic on E (i.e., does not have an analytic extension to a neighborhood
of E) then every point on �E� is a limit point of the zeros of [ pn]. The
precise statements must discount zeros in the interior of E� , and must be
modified if f is identically zero on a component of the interior of E� .

Specific one variable results (reformulated) are as follows

Theorem 0.1 (Wo� jcik [W]). f has an analytic extension to ER if the
zeros of [ pn] have no point of accumulation in ER .

Theorem 0.2 (Blatt�Saff [BS]). Suppose f is not analytic on E and
for some z0 # �E� , f (z0){0. Then there exists a sequence of points [zn] with
limn � � zn=z0 and pn (zn)=0.

Theorem 0.3 (Ples� niak [P]). Let + be a finite Borel measure on E
which satisfies the Leja polynomial condition (see [P] for the definition).
Then f has an analytic extension to ER if the zeros of [ fn] have no point of
accumulation in ER .

In this paper we will give multivariable versions of these results.
Theorem 3.5 and Corollary 3.6 generalize theorems 0.1 and 0.3. In
Corollary 3.6, the hypothesis that + satisfy the Bernstein�Markov condition
is a less stringent on + than requiring it to satisfy the Leja polynomial con-
dition (see [Bl1]). Theorem 3.8 is a multivariable version of Theorem 0.2.
In Theorem 3.8 an additional hypothesis is required (see (3.15) or (3.20))
on the set E.

We also prove (Theorem 2.1) an Lq analogue of a result on Tchebyshev
polynomials ([Bl2, Theorem 3.1]; [Si3]). This is used in the proof of
Corollary 3.6 but is of independent interest.
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1. PRELIMINARIES

Let E/CN be a compact set. Let VE denote its pluricomplex extremal
function, i.e.

VE (z)=sup [u(z) : u # L, u�E�0], (1.1)

where L denotes the Lelong class of plurisubharmonic functions satisfying

sup
z # CN

u(z)&log+ |z|<�, (1.2)

where | } | denotes the Euclidean norm in CN.
We shall assume that E is regular, i.e., the function VE is continuous.

This implies that E is not pluripolar. Recall that a set E/CN is said to be
pluripolar if for every a # E there is a neighborhood V of a and a
plurisubharmonic function u on V such that E & V/[z # V | u=&�].
Pluripolar sets have Lebesgue (2n�dimensional) measure zero [K, Cor.
2.9.10].

Let + be a finite Borel measure on E such that the pair (E, +) satisfies
the Bernstein�Markov condition (BM), i.e., for any =>0 and q, 0<q<�,
there exists A=A(=, q) such that

&p&E�A(1+=)deg ( p) &p&+, q (1.3)

for all polynomials p # P(CN), where

&p&+, q=\ |
E

| p(z)| q d++
1�q

. (1.4)

It is known (see [Bl1, Remark 3.2]) that if + satisfies (BM) for one
exponent q, 0<q<�, then it satisfies (BM) for all q, 0<q<�.

Let Lq
P(E, +), 1�q<�, denote the continuous functions on E that are

limits of polynomials in the norm & &+, q . Of course, W(E)/Lq
P(E, +).

Let f be a continuous function on E. We denote by pn # Pn and fn # Pn ,
respectively, polynomials of degree at most n # N0 of best approximation in
the uniform norm and the norm & }&+, q , respectively, i.e.

& f& pn&E=inf [& f&qn&E , qn # Pn], (1.5)

& f& fn&+, q=inf [& f&qn&+, q , qn # Pn]. (1.6)

These best approximants are not necessarily unique.
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From the Bernstein�Walsh�Siciak theorem [Si1, Theorem 10.3] and the
Bernstein�Walsh inequality (BW)

| p(z)|�&p&E (exp VE (z))deg p, for z # CN and (1.7)

for all polynomials p # P(CN) (see, eg., [Si2, 2.11] or [K, 5.1]) we con-
clude the following

Remark 1.1. (cf. [Si2, Corollary 8.6]) Let E/CN be a compact,
regular set and let + be a Borel measure such that (E, +) satisfies (BM). Let
f be a continuous function on E and R>1. If f admits an analytic extension
onto ER , denoted F, then the sequences of polynomials of best approxima-
tion [ pn] and [ fn] in the norms & }&E and & }&+, q are uniformly bounded
on compact subsets of ER and, for 1<r<R, we have

lim sup
n � �

&F& pn&1�n
Er

�
r
R

(1.8)

and

lim sup
n � �

&F& fn&1�n
Er

�
r
R

. (1.9)

We shall denote by r̂n the homogeneous part of degree n of the polyno-
mial rn (z)=� |:|�n a: z:, i.e., r̂n(z)=� |:|=n a:z:. If deg rn<n we put
r̂n (z)#0.

For a homogeneous polynomial hn (z)=� |:|=n a: z: we define the
Tchebyshev polynomials associated with hn and the norms & }&E , & }&+, q ,
respectively, by

TchE hn (z)=hn (z)&rn&1 , (1.10)

Tch+, q hn (z)=hn (z)&sn&1 , (1.11)

where rn&1 , sn&1 # Pn&1 are polynomials of best approximation to hn in
the norms & }&E and & }&+, q , respectively, i.e.

&hn (z)&rn&1&E=inf [&hn (z)& pn&1&E , pn&1 # Pn&1],

&hn (z)&sn&1 &+, q=inf [&hn (z)& pn&1&+, q , pn&1 # Pn&1].

In general, TchEhn and Tch+, q hn need not be unique (except for q=2,
since L2

P(E, +) is a Hilbert space, thus sn&1 is the orthogonal projection of
hn on Pn&1), however the norms &TchEhn &E and &Tch+, qhn&+, q are unam-
biguously defined.
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Lemma 1.2 (see also [Sz, Lemma 5.2]). Let (E, +) satisfy the
Bernstein�Markov condition. Let [hn]n=1, 2, 3, } } } be a sequence of
homogeneous polynomials of degree n. Let q satisfy 1�q<�. Then

lim sup
n � �

&TchEhn&1�n
E =lim sup

n � �
&TchEhn&1�n

+, q=lim sup
n � �

&Tch+, qhn&1�n
E

=lim sup
n � �

&Tch+, qhn&1�n
+, q .

Proof. From (BM) we have, for every =>0

&Tch+, qhn&E�A(1+=)n &Tch+, qhn&+, q . (1.12)

Since Tch+, qhn is a competitor for TchEhn we have

&TchEhn&E�&Tch+, qhn&E . (1.13)

Similarly

&Tch+, qhn&+, q�&TchEhn&+, q . (1.14)

Since +(E)<+� we have

&TchEhn&+, q�+(E)1�q &TchEhn&E (1.15)

Now, (1.12) and (1.13) imply

lim sup
n � �

&TchEhn&1�n
E �lim sup

n � �
&Tch+, qhn&1�n

E �lim sup
n � �

&Tch+, q hn &1�n
+, q .

Also, (1.14) and (1.15) imply

lim sup
n � �

&Tch+, qhn&1�n
+, q�lim sup

n � �
&TchEhn&1�n

+, q�lim sup
n � �

&TchE hn &1�n
E .

The result follows. K

For u # L we define the Robin function associated with u by

\u([z])=lim sup

* # C
|*| � �

u(*z)&log+ |*z|, for z # CN "[0], (1.16)

where [ } ]: CN"[0] % z � [z] # PN&1 denotes the natural map and PN&1

denotes complex projective (N&1)-space.
It is seen that if pn # Pn then un (z) :=1�n log | pn(z)| # L and

\un([z])=
1
n

log | p̂n(z)|&log |z|, for z{0. (1.17)

If deg pn<n then p̂n(z)#0 and we put \un #&�.
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The Robin function of a compact, regular set E, denoted \E ([z]) is
defined as the Robin function of VE (z).

2. AN APPLICATION OF THE ROBIN FUNCTION TO POLYNOMIAL
APPROXIMATION��THE CASE OF Lq NORMS

We prove a counterpart of [Bl2, Theorem 3.1] in the case of the polyno-
mial approximation in Lq-norms.

Theorem 2.1. Let E/CN be a compact, regular set and let + be a Borel
measure such that the pair (E, +) satisfies (BM). Fix q, 1�q<�. Let
f # Lq

P(E, +) and R>1. The following conditions are equivalent

f extends analytically to ER (2.1)

lim sup
n � �

& f& fn&1�n
+, q�

1
R

(2.2)

lim sup
n � �

&Tch+, q f� n&1�n
E �

1
R

(2.3)

lim sup
n � �

&Tch+, q f� n&1�n
+, q�

1
R

(2.4)

lim sup
n � �

1
n

log | f� n (z)|&log |z|�\E ([z])&log R, for all z{0, (2.5)

where [ fn] is a sequence of polynomials of best approximation in the norm
& }&+, q .

The proof of the theorem is analogous to the proof of [Bl2, Theorem 3.1]

(2.1) O (2.2) O (2.4) O (2.2) O (2.1)

(2.3) � (2.4)

(2.3) O (2.5) O (2.4).

Proof. Assume (2.1). By the Bernstein�Walsh�Siciak theorem we get

lim sup
n � �

& f& pn&1�n
E �

1
R

, (2.6)
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where [ pn] is a sequence of polynomials of best uniform approximation to
f on E. Since

& f& fn&+, q�& f& pn&+, q�(+(E))1�q & f& pn&E , (2.7)

we have

lim sup
n � �

& f& fn&1�n
+, q�

1
R

, (2.8)

i.e., (2.2) holds.
Next, by the definition of the Tchebyshev polynomial Tch+, q f� n and by

(1.6), we get

&Tch+, q f� n&+, q�& fn& fn&1&+, q

�& fn& f &+, q+& f& fn&1 &+, q

�2 & f& fn&1&+, q (2.9)

Thus, by (2.2),

lim sup
n � �

&Tch+, q f� n&1�n
+, q�lim sup

n � �
& f& fn&1�n

+, q�
1
R

,

and (2.4) follows.
Since the pair (E, +) satisfies (BM), by Lemma 1.2, the conditions (2.3)

and (2.4) are equivalent.
Assume (2.4). By the definition of the Tchebyshev polynomial

Tch+, q f� n+1 , we have

& f& fn&+, q�& f&( fn+1&Tch+, q f� n+1)&+, q

�& f& fn+1&+, q+&Tch+, q f� n+1)&+, q . (2.10)

Since & f& fn&+, q�& f& fn+1&+, q and limn � � & f& fn &+, q=0, we have, by
(2.4),

lim sup
n � �

& f& fn&1�n
+, q�

1
R

, (2.11)

i.e., (2.2) holds.
Next, suppose that (2.2) holds. Fix r, 1<r<R, and then fix =>0 and \

such that (1+=) r<\<R. By (2.2), there exists n0=n0(\) such that

& f& fn&+, q�
1
\n for n�n0 . (2.12)
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By (BW),

& fn+1& fn&Er
�rn+1& fn+1& fn&E . (2.13)

Next, by (BM), there exists A=>0 such that

& fn+1& fn&E�A=(1+=)n+1 & fn+1& fn&+, q , for all n. (2.14)

Since

& fn+1& fn&+, q�& fn+1& f&+, q+& fn& f &+, q�2& f& fn&+, q , (2.15)

we get, for n�n0 , & fn+1& fn&Er
�2A=\((1+=)r�\)n+1. Thus, for all

M, n�n0 , we have

:
M

k=n

& fk+1& fk&Er
�C\(1+=) r

\ +
n+1

, (2.16)

where C=2A=\2(\&(1+=) r)&1. Since (1+=) r<\, the series

f0+ :
�

k=0

fk+1& fk

converges uniformly on Er . Since r<R has been chosen arbitrary, we
conclude that f extends analytically to ER . i.e., (2.1) follows.

Suppose that (2.3) holds. Fix r such that 1<r<R. Then for n�n1 (r) we
have &Tch+, q f� n&1�n

E �1�r or

log r+
1
n

log |Tch+, q f� n (z)|�0, for all z # E. (2.17)

Hence, by the definition of the pluricomplex extremal function VE (see
(1.1)), we have

log r+
1
n

log |Tch+, q f� n (z)|�VE (z), for all z # CN. (2.19)

Taking the Robin function of the both sides of (2.19) gives

log r+
1
n

log | f� n (z)|&log |z|�\E ([z]), for all z # CN"[0]. (2.20)

Since it holds for all n�n1 (r) and all r<R we get (2.5).

It remains to prove (2.5) O (2.4). This follows from the following
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Lemma 2.2 (cf. [Bl2, Theorem 3.2]). Let E/CN be a compact, regular
set and let + be a Borel measure such that (E, +) satisfies (BM). Let q satisfy
1�q<�. Let hn be a sequence of homogeneous polynomials satisfying
deg hn=n or hn(z)#0, for all n # N0 . Let R>1. If

lim sup
n � �

1
n

log |hn (z)|&log |z|�\E ([z])&log R, for all z # CN "[0]
(2.21)

then

lim sup
n � �

&Tch+, qhn&1�n
+, q�

1
R

. (2.22)

Recall (1.13) that if hn(z)#0 we put 1�n log |hn(z)|&log |z|#&�.

Proof of of Lemma 2.2. From [Bl2, Theorem 3.1] (2.21) we have that

lim sup
n � �

&TchEhn&1�n
E �

1
R

and the result now follows from Lemma 1.2. K

Putting hn :=f� n in the above lemma gives the implication (2.5) O (2.4).
This completes the proof of Theorem 2.1.

3. ZEROS OF POLYNOMIALS OF BEST APPROXIMATION

Let E be a compact, regular subset of CN, f # W(E) and [ pn] a sequence
of best approximants to f in the uniform norm on E. We will relate the
location of the zeros of [ pn] to the analytic extension properties of f.

First we consider

v(z) :=\lim sup
n � �

1
n

log | pn (z)|+* (3.1)

where ( )* denotes upper semi-continuous regularization. (Recall that
(g(z))*=lim! � z g(!).)

The sequence [ pn] is uniformly bounded on E. Since E is non pluri-
polar, [ pn(z)] is locally bounded from above on CN by (BW), and so
v # L [K, prop. 5.2.1].

Let

Z :=[z # CN | v(z)�0] (3.2)

and we let int(Z) denote the interior of the set Z. Let R>1. We have
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Lemma 3.1. The function f extends to a holomorphic function on ER if
and only if int(Z)#ER .

Proof. Suppose that ER /int(Z). Let 1<r<R. Then Er /int(Z).
Since

lim sup
n � �

1
n

log | pn (z)|�0 on Er

we have by Hartogs lemma, given =>0, there exists n0 (=)

1
n

log | pn (z)|�=, for n�n0 (=) and z # Er (3.3)

and

1
n

log | pn (z)|�=+VEr
(z) for z # CN and n�n0 . (3.4)

Taking the Robin function of both sides of the above inequality gives

1
n

log | p̂n (z)|&log |z|�=+\Er
([z]) for n�n0 . (3.5)

Recall that since E is regular,

VEr
(z)=max[VE (z)&log r, 0] (3.6)

and

\Er
([z])=\E ([z])&log r, for all z{0. (3.7)

Using (3.5) and (3.7) gives

1
n

log | p̂n (z)|&log |z|�=+\E ([z])&log r for n�n0 . (3.8)

Hence, for all =>0, we have

lim sup
n � �

1
n

log | p̂n (z)|&log |z|�=+\E ([z])&log r (3.9)

This implies

lim sup
n � �

1
n

log | p̂n (z)|&log |z|�\E ([z])&log r (3.10)

205POLYNOMIALS OF BEST APPROXIMATION



Then, by [Bl2, Theorem 3.1] f extends analytically to Er . Since (3.10) is
valid for any r<R, the function f extends analytically to ER .

Conversely, if f extends analytically to ER , by Remark 1.1, the sequence
[ pn] is uniformly bounded on Er , for all r<R. Thus, v�0 on Er and since
�r<R Er /ER , we have v�0 on ER and so ER /int(Z), since ER is open
(cf. 1.1). K

Let E/CN be a compact, regular set and let + be a finite Borel measure
such that (E, +) satisfies (BM). Let q satisfy 1�q<�. Let [ fn] be a
sequence of polynomials of best approximation in the norm & }&+, q to a
function f # Lq

P(E, +). We put

v+ (z) :=\lim sup
n � �

1
n

log | fn (z)|+*
(3.11)

The sequence [ fn (z)] is uniformly bounded in Lq(E, +). Using (BM) we
conclude that lim supn � �& fn&1�n

E �1 so v+ # L (by [Bl1, Lemma 3.2] and
[K, prop. 5.2.1]).

Let Z+=[z # CN : v+(z)�0]. Let int(Z+) denote the interior of the
set Z+ .

Lemma 3.2. Let f # Lq
P(E, +). Let R>1. The function f extends analyti-

cally to ER if and only if int(Z+)#ER .

The proof of the above lemma is analogous to the proof of Lemma 3.1.
To prove that ER /int(Z+) implies that f extends analytically to ER , one
should repeat (3.3)�(3.10) putting [ fn] instead of [ pn] and use Theorem
2.1 in (3.10) instead of [Bl2, Theorem 3.1]. The converse implication
follows from Remark 1.1. K

Lemma 3.3. (i) Z#E and Z+ #E.

(ii) Let f # W(E) not be analytic on E. Then �Z & E{<. Similarly
for f # Lq

P(E, +) and f not analytic on E, then �Z+ & E{<.

(iii) Let f # W(E) have an analytic extension to ER ( for some R>1)
but not to Es for any s>R. Then �ER & �(int(Z)){< and �ER &
�(int(Z+)){<.

Proof. (i) To show that Z#E we must show that v�0 on E.

The sequence [ pn (z)] is uniformly bounded on E so lim supn � �

1�n log | pn(z)|�0 on E. Since negligible sets are pluripolar [K, Cor 4.6.2]
we have v�0 on E"N, where N is pluripolar, so v�V*E"N . But by [K, Cor
5.2.5] V*E"N=VE and VE #0 on E.

The proof that Z+ #E is similar.
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(ii) That �Z & E{< follows from (i) and Lemma 3.1. That
�Z+ & E{< follows from (i) and Lemma 3.2.

(iii) This follows from Lemmas 3.1 and 3.2. K

Example 3.4. Let E be a compact, regular subset of C and let f # W(E)
not be analytic on E. Then it follows from ([BS, Theorem 2.1 and Lemma
4.2]) that v (defined by (3.1)) is the Green function of C"E� and that Z=E� .

In the multivariable case we will give an example of f # W(E), not
analytic on E but where Z{E (E will be polynomially convex so that
E=E� ).

Let E be the unit ball in C2. E=[(z1 , z2) : |z1 |2+|z2 |2�1] and let
f =f (z1) be a function continuous on 21=[z1 # C : |z1 |�1] analytic on
int(21) and not analytic on 21 . Let pn (z1) denote the best polynomial
approximant of degree �n to f on 21 . Then pn (z1) is a best approximant
of total degree �n to f considered as a function on E. Using the above
quoted result of Blatt-Saff it follows that

lim
n � �

1
n

log | pn (z1)|=log |z1 | for |z1 |�1

so it follows that Z=[(z1 , z2) # C2 : |z1 |�1]. Note that �Z & E does not
contain either the topological or Silov boundary of E, in contrast, to the
one-variable case.

Theorem 3.5. Let f be holomorphic on ER and let ER
t

be the union of
those components of ER , where f is not identically equal to zero. Let [ pn]
be a sequence of best uniform approximants to f on E. Let z0 #
�ER
t

& �(int(Z)). Then there exists a sequence of points [zn] with
limn � � zn=z0 and pn(zn)=0.

Proof. The proof is by contradiction. Suppose that z0 is not such a limit
point. Then there is a ball B centred at z0 such that pn {0 on B for n�n1 .
Chose an analytic branch of p1�n

n on B. For some constant M1>0 we have
v(z)�M1 , for all z # B� . Hence

| p1�n
n (z)|=exp \1

n
log | pn (z)|+�exp 2M1 for all n�n2 (M1) (3.12)

and the sequence [ p1�n
n ] is a uniformly bounded sequence of analytic func-

tions on B. Now B�3 int(Z), so there is a point z1 # B where lim supn � �1�n
log | pn (z1)|>0 since lim supn � � 1�n log | pn (z)|=v(z), except possibly on
a pluripolar set.
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Chose a subsequence J/N0 such that

lim
n # J

1
n

log | pn (z1)|>0 (3.13)

Let J1 be a subsequence of J such that the uniformly bounded sequence of
analytic functions [ p1�n

n (z)]n # J1
converges uniformly on compact subsets of

B to an analytic function, denoted g(z). Then

log | g(z)|= lim
n # J1

1
n

log | pn(z)|, for z # B, (3.14)

so | g(z1)|>1 and | g(z)|�1 for z # int(Z) & B.
Thus g is not constant on B and so by the maximum modulus principle

| g(z)|<1 on int(Z) & B. This implies that limn # J1
| pn (z)|1�n<1, for

z # int(Z) & B, and so limn # J1
| pn (z)|=0. But on B & ER , the sequence

[ pn] converges to f uniformly on compact subsets. Hence f#0 on B & ER
t

,
which contradicts the assumption that f is not identically zero on any com-
ponent of ER

t
. K

The above proof is based on the proof of Theorem 2.2 in [BS]. See also
[Wa, theorem 2].

Let E/CN be a compact, regular set and let + be a finite Borel measure
such that (E, +) satisfies (BM). Let q satisfy 1�q<�.

Proceeding in the same manner as in the proof of Theorem 3.5, one
easily proves

Corollary 3.6. Let f be holomorphic on ER and let ER
t

be the union of
connected components of ER where f is not identically equal to zero. Let [ fn]
be a sequence of best approximants to f on E in the norm & }&+, q . Let
z0 # � ER

t
& �(int(Z+)). Then there exists a sequence of points [zn] such that

limn � � zn=z0 and fn (zn)=0.

Remark 3.7. Let f be holomorphic on ER but not on Es (for any s>R).
Let [ pn] be a sequence of best uniform approximants to f on E. Let
z0 # �ER & �(int(Z)) and let : be a complex number such that there is a
connected component of ER with z0 in its closure and f is not identically
equal to : on that component. Then there exists a sequence of points zn(:)
such that limn � � zn(:)=z0 and pn (zn (:))=0.

This is because pn&: is a best approximant from Pn to f &:. This, in
turn, shows that the sequence of best approximants [ pn] have ``the
behaviour of an essential singularity'' at every point of �ER & �(int(Z)).
Precisely, for every point z0 # �ER & �(int(Z)) and every neighborhood N
of z0 the values ��

n=1 pn(V) are equal to C or omit at most one complex
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number. In particular the sequence [ pn] does not converge uniformly on
any neighborhood of z0 although the function f may have an analytic
extension to a neighborhood of z0 .

Similarly, the sequence of best approximants [ fn] has ``the behavior of
an essential singularity'' at every point of �ER & �(int(Z+)).

We now turn to the case that f is not analytic on E. We will give a multi-
variable version of ([BS, Theorem 2.2]). That result is valid for E a
regular, compact, polynomially convex subset of C whereas our generaliza-
tion requires an additional hypothesis on E. (We conjecture Theorem 3.8
to be valid without this additional hypothesis).

We introduce:

For all z # E and any ball B centered at z, there is a connected
(3.15)component E$of B� & E which is not pluripolar.

Theorem 3.8. Let f # W(E) and suppose f is not analytic on E. Assume
that E satisfies (3.15). Let z0 # �Z & E be such that f (z0){0. Then there
exists a sequence of points [zn], such that limn � � zn=z0 and pn (zn)=0, for
n=1, 2, 3, ... .

Proof. Note that for f # W(E) if f is not analytic on E then, by Lemma
3.3, �Z & E{<. The proof is by contradiction. Suppose that z0 is not such
a limit point. Proceeding as in the proof of Theorem 3.5 we may assume
there is a ball B, with center z0 , sufficiently small radius and an integer n1

such that

| f (z)& f (z0)|< } f (z0)
4 } for z # E & B� (3.16)

and

| pn (z)& f (z0)|< } f (z0)
2 } for z # E & B� (3.17)

for n�n1 .
Furthermore we may assume pn (z) has no zero on B for n�n1 . For

n�n1 we choose an analytic branch of log pn(z) on B.
As in the proof of Theorem 3.5, we may assume there is a subsequence

J1 /N such that

g1 (z) := lim
n # J1

exp \1
n

log pn (z)+ (3.18)

is analytic and non constant on B.
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Let log1 be an analytic branch of the logarithm function on the set

G={{ # C| |{& f (z0)|< } f (z0)
2 }= .

Then log1 ( pn (z)) is defined for z # E & B� and n�n1 . Now

1
2?i

[log1 ( pn (z))&log( pn (z))]

is continuous on E & B� and integer-valued. Hence it must be constant on
E$ (by hypothesis (3.15) this is a connected component of E & B� ). Let
tn # Z denote its value.

We then consider the functions log( pn (z)+2?itn) and we may choose a
subsequence J2 /J1 so that

g2(z) := lim
n # J2

exp \1
n

(log( pn (z)++2?itn)) (3.19)

is analytic on B.
But Im(log( pn (z)+2?itn )) is bounded on E$ since Im(log1 ({)) is

bounded on G. Thus g2 (z)=1 for all z # E$ and since E$ is not pluripolar,
g2 (z)=1 for all z # B. But g1 (z)=cg2 (z) for some constant c, |c|=1.
Hence g1(z) is constant on B. This contradiction establishes the result. K

Remark 3.9. Note that Theorem 3.8 is also valid under the hypothesis
(3.20) below rather than (3.15):

For all z # E and all balls B centered at z, E & B is not
contained in a proper real-analytic subvariety of B.

(3.20)

This is because E & B/[z # B | | g1(z)|=1] and g1 is non-constant,
analytic on B.

Under the hypothesis of Theorem 3.8, we may conclude the following:

Remark 3.10. Given any complex number : and z0 # �Z & E with
f(z0){: there exists a sequence of points zn (:) satisfying limn � � zn (:)=z0

and pn (zn (:))=: (see Remark 3.7).

REFERENCES

[Be] S. N. Bernstein, ``Complete Works I,'' pp. 443�451, 1952. [In Russian]
[Bl1] T. Bloom, Orthogonal polynomials in CN , Indiana Univ. Math. J. 46(2) (1997),

427�452.
[Bl2] T. Bloom, Some applications of the Robin function to multivariable approximation

theory, J. Approx. Theory 92 (1998), 1�21.

210 BLOOM AND SZCZEPAN� SKI



[Bo] P. B. Borwein, The relationship between the zeros of best approximations and differen-
tiability, Proc. Amer. Math. Soc. 92 (1984), 528�532.

[BS] H.-P. Blatt and E. B. Saff, Behaviour of zeros of polynomials of near best approxima-
tion, J. Approx. Theory 46 (1986), 323�344.

[K] M. Klimek, ``Pluripotential Theory,'' Clarendon Press, 1991.
[P] W. Ples� niak, On the distribution of zeros of the polynomials of best L2-approximation

to holomorphic functions, Zeszyty Nauk. Uniw. Jagiellon� . 22 (1981), 29�35.
[Si1] J. Siciak, On some extremal functions and their applications, Trans. Amer. Math. Soc.

105(2), 1962, 322�357.
[Si2] J. Siciak, Extremal plurisubharmonic functions in CN, Ann. Polon. Math. 39 (1981),

175�211.
[Si3] J. Siciak, A remark on Tchebysheff polynomials in CN, Univ. Jagiellonian Acta Math.

25 (1997).
[Sz] J. Szczepan� ski, Zeros of polynomials approximating analytic functions, IM UJ

Preprint 23 (1997).
[Wa] J. L. Walsh, The analogue for maximally convergent polynomials of Jentzsch's

theorem, Duke Math. J. 26 (1959), 605�616.
[W] A. Wo� jcik, On zeros of polynomials of best approximation to holomorphic and C�

functions, Monatsh. Math. 105 (1988), 75�81.

211POLYNOMIALS OF BEST APPROXIMATION


	0. INTRODUCTION 
	1. PRELIMINARIES 
	2. AN APPLICATION OF THE ROBIN FUNCTION TO POLYNOMIAL APPROXIMATION -3222.4 2157.6 mv E CASE OF ... NORMS 
	3. ZEROS OF POLYNOMIALS OF BEST APPROXIMATION 
	REFERENCES 

